676 research outputs found
Deformation of Equilibrium Shape of a Vesicle Induced by Injected Flexible Polymers
Using field theoretic approach, we study equilibrium shape deformation of a
vesicle induced by the presence of enclosed flexible polymers, which is a
simple model of drug delivery system or endocytosis. To evaluate the total free
energy of this system, it is necessary to calculate the bending elastic energy
of the membrane, the conformation entropy of the polymers and their
interactions. For this purpose, we combine phase field theory for the membrane
and self-consistent field theory for the polymers. Simulations on this coupled
model system for axiosymmetric shapes show a shape deformation of the vesicle
induced by introducing polymers into it. We examined the dependence of the
stability of the vesicle shape on the chain length of the polymers and the
packing ratio of the vesicle. We present a simple model calculation that shows
the relative stability of the prolate shape compared to the oblate shape.Comment: 5 pages, 3 figure
Particle Monte Carlo simulation of string-like colloidal assembly in 2 dimensions
We simulate structural phase behavior of polymer-grafted colloidal particles
by molecular Monte Carlo technique. Interparticle potential, which has a finite
repulsive square-step outside a rigid core of the colloid, was previously
confirmed via numerical self-consistent field calculation. This model potential
is purely repulsive. We simulate these model colloids in the canonical ensemble
in 2 dimensions and find that these particles containing no interparticle
attraction self-assemble and align in a string-like assembly, at low
temperature and high density. This string-like colloidal assembly is related to
percolation phenomena. Analyzing the cluster size distribution and the average
string length, we build phase diagrams and discover that the average string
length diverges around the region where the melting transition line and the
percolation transition line cross. This result is similar to Ising spin
systems, in which the percolation transition line and the order-disorder line
meet at a critical point.Comment: 11 pages, 14 figure
Monte-Carlo simulation of string-like colloidal assembly
We study structural phase transition of polymer-grafted colloidal particles
by Monte Carlo simulations on hard spherical particles. The interaction
potential, which has a weak repulsive step outside the hard core, was validated
with use of the self-consistent field calculations. With this potential,
canonical Monte Carlo simulations have been carried out in two and three
dimensions using the Metropolis algorithm. At low temperature and high density,
we find that the particles start to self-assemble and finally align in strings.
By analyzing the cluster size distribution and string length distribution, we
construct a phase diagram and find that this string-like assembly is related to
the percolation phenomena. The average string length diverges in the region
where the melting transition line and the percolation transition line cross,
which is similar to Ising spin systems where the percolation transition line
and the order-disorder line meet on the critical point.Comment: 7 pages, 6 figures, Accepted for Europhysics Letter
Coarsening in surface growth models without slope selection
We study conserved models of crystal growth in one dimension [] which are linearly unstable and develop a mound
structure whose typical size L increases in time (). If the local
slope () increases indefinitely, depends on the exponent
characterizing the large behaviour of the surface current (): for and for
.Comment: 7 pages, 2 EPS figures. To be published in J. Phys. A (Letter to the
Editor
Elastic energy of polyhedral bilayer vesicles
In recent experiments [M. Dubois, B. Dem\'e, T. Gulik-Krzywicki, J.-C.
Dedieu, C. Vautrin, S. D\'esert, E. Perez, and T. Zemb, Nature (London) Vol.
411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with
polyhedral symmetry has been observed. On the basis of the experimental
phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T.
Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc.
Natl. Acad. Sci. U.S.A. Vol. 101, 15082 (2004)] that the mechanism for the
formation of bilayer polyhedra is minimization of elastic bending energy.
Motivated by these experiments, we study the elastic bending energy of
polyhedral bilayer vesicles. In agreement with experiments, and provided that
excess amphiphiles exhibiting spontaneous curvature are present in sufficient
quantity, we find that polyhedral bilayer vesicles can indeed be energetically
favorable compared to spherical bilayer vesicles. Consistent with experimental
observations we also find that the bending energy associated with the vertices
of bilayer polyhedra can be locally reduced through the formation of pores.
However, the stabilization of polyhedral bilayer vesicles over spherical
bilayer vesicles relies crucially on molecular segregation of excess
amphiphiles along the ridges rather than the vertices of bilayer polyhedra.
Furthermore, our analysis implies that, contrary to what has been suggested on
the basis of experiments, the icosahedron does not minimize elastic bending
energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for
large polyhedron sizes, the snub dodecahedron and the snub cube both have lower
total bending energies than the icosahedron
Geographical distribution of Phagocata vivida in the Far East
Phagocata vivida (Ijima et Kaburaki, 1916) is common in cold-water habitats in mountainous and hilly regions in Japan; in Northern Japan it occurs in lowland areas. Comparative studies of the material from South Korea and Primorskiy in Northeast Siberia, Russia, show that Ph. vivida is distributed widely in these geographic areas. Phagocata miyadii Okugawa, 1939, reported from North Korea and Northeastern China is a synonym of Ph vivida. Geographical distribution of this species in the Japanese Islands now becomes very clear. Judging by its geographical and vertical distributions, the species probably is a preglacial faunal element that entered Japan by the northern route to Old Honshû Island along the coast of the Old Sea of Japan. © 1995, Kluwer Academic Publishers. All rights reserved
Nanomechanical structures with 91 MHz resonance frequency fabricated by local deposition and dry etching
We report an all-dry, two-step, surface nanoengineering method to fabricate nanomechanical elements without photolithography. It is based on the local deposition through a nanostencil of a well-defined aluminum pattern onto a silicon/silicon-nitride substrate, followed by plasma etching to release the structures. The suspended 100-nm-wide, 2-mum-long, and 300-nm-thick nanolevers and nanobridges have natural resonance frequencies of 50 and 91 MHz, respectively. The fabrication method is scalable to a full wafer and allows for a variety of materials to be structured on arbitrary surfaces, thus opening new types of nanoscale mechanical systems
Phase ordering and shape deformation of two-phase membranes
Within a coupled-field Ginzburg-Landau model we study analytically phase
separation and accompanying shape deformation on a two-phase elastic membrane
in simple geometries such as cylinders, spheres and tori. Using an exact
periodic domain wall solution we solve for the shape and phase ordering field,
and estimate the degree of deformation of the membrane. The results are
pertinent to a preferential phase separation in regions of differing curvature
on a variety of vesicles.Comment: 4 pages, submitted to PR
Coarsening Dynamics of a One-Dimensional Driven Cahn-Hilliard System
We study the one-dimensional Cahn-Hilliard equation with an additional
driving term representing, say, the effect of gravity. We find that the driving
field has an asymmetric effect on the solution for a single stationary
domain wall (or `kink'), the direction of the field determining whether the
analytic solutions found by Leung [J.Stat.Phys.{\bf 61}, 345 (1990)] are
unique. The dynamics of a kink-antikink pair (`bubble') is then studied. The
behaviour of a bubble is dependent on the relative sizes of a characteristic
length scale , where is the driving field, and the separation, ,
of the interfaces. For the velocities of the interfaces are
negligible, while in the opposite limit a travelling-wave solution is found
with a velocity . For this latter case () a set of
reduced equations, describing the evolution of the domain lengths, is obtained
for a system with a large number of interfaces, and implies a characteristic
length scale growing as . Numerical results for the domain-size
distribution and structure factor confirm this behavior, and show that the
system exhibits dynamical scaling from very early times.Comment: 20 pages, revtex, 10 figures, submitted to Phys. Rev.
- …