3,852 research outputs found
Molecular dynamics analysis for the brownian motion of nano bubble
The smaller bubble whose diameter is below 1 micrometer is called nanobubble or ultra-fine bubble. The size of nano bubble is so small and invisible that the diameter distribution is generally evaluated as a mean square distance(MSD) of brownian motion that is measured by Dynamic Light Scattering(DLS) method based on the Einstein-Stokes equation. The equation, however, is not clarified for the application to the bubble sizing. In our previous study, the different behavior between solid particle and bubble with the same diameter at sub-micro scale was confirmed. In this study, the Brownian motion of nano bubble as well as the solid Pt particle whose diameter are around a few nano meters were simulated with the Molecular Dynamics(MD) method. The simulation employed Lennard Jones(LJ) potential to estimate the MSD of the bubbles and particles by tracing the trajectories of the center of gravity of them and resulted that the displacement of solid particles in liquid argon was less than the predicted amount by the Einstein-Stokes equation. In order to confirm apparent viscosity caused by periodic boundary conditions, the drop velocity of the particle due to the gravity force is measured and apparent viscosity is obtained using Stokes’ low with this velocity. Considering this apparent viscosity, the diameter of the solid particle is approximated using the Einstein-Stokes equation under its diameter of 4 nm. The bubble diameter obtained by the Brownian motion is lower than the Einstein-Stokes equatio
Lunin-Maldacena backgrounds from the classical Yang-Baxter equation -- Towards the gravity/CYBE correspondence
We consider \gamma-deformations of the AdS_5xS^5 superstring as Yang-Baxter
sigma models with classical r-matrices satisfying the classical Yang-Baxter
equation (CYBE). An essential point is that the classical r-matrices are
composed of Cartan generators only and then generate abelian twists. We present
examples of the r-matrices that lead to real \gamma-deformations of the
AdS_5xS^5 superstring. Finally we discuss a possible classification of
integrable deformations and the corresponding gravity solution in terms of
solutions of CYBE. This classification may be called the gravity/CYBE
correspondence.Comment: 18 pages, no figure, LaTeX, v2:references and further clarifications
adde
Angular Momentum Transport by MHD Turbulence in Accretion Disks: Gas Pressure Dependence of the Saturation Level of the Magnetorotational Instability
The saturation level of the magnetorotational instability (MRI) is
investigated using three-dimensional MHD simulations. The shearing box
approximation is adopted and the vertical component of gravity is ignored, so
that the evolution of the MRI is followed in a small local part of the disk. We
focus on the dependence of the saturation level of the stress on the gas
pressure, which is a key assumption in the standard alpha disk model. From our
numerical experiments it is found that there is a weak power-law relation
between the saturation level of the Maxwell stress and the gas pressure in the
nonlinear regime; the higher the gas pressure, the larger the stress. Although
the power-law index depends slightly on the initial field geometry, the
relationship between stress and gas pressure is independent of the initial
field strength, and is unaffected by Ohmic dissipation if the magnetic Reynolds
number is at least 10. The relationship is the same in adiabatic calculations,
where pressure increases over time, and nearly-isothermal calculations, where
pressure varies little with time. Our numerical results are qualitatively
consistent with an idea that the saturation level of the MRI is determined by a
balance between the growth of the MRI and the dissipation of the field through
reconnection. The quantitative interpretation of the pressure-stress relation,
however, may require advances in the theoretical understanding of non-steady
magnetic reconnection.Comment: 45 pages, 5 tables, 17 figures, accepted for publication in Ap
VSOP observation of the quasar PKS 2215+020: a new laboratory for core-jet physics at z=3.572
We report results of a VSOP (VLBI Space Observatory Programme) observation of
a high redshift quasar PKS 2215+020 (z=3.572). The ~1 milliarcsecond resolution
image of the quasar reveals a prominent `core-jet' structure on linear scales
from 5/h to 300/h pc ($H_0=100*h km/(s*Mpc). The brightness temperatures and
sizes of bright features identified in the jet are consistent with emission
from relativistic shocks dominated by adiabatic energy losses. The jet is
powered by the central black hole with estimated mass of ~4*10^9 solar masses.
Comparisons with VLA and ROSAT observations indicate a possible presence of an
extended radio/X-ray halo surrounding 2215+020.Comment: 15 pages, 6 figures, aastex macros; accepted for publication in The
Astrophysical Journal, V.546, N.2 *(January 10 2001
Identification of SH ro-vibrational lines in R And
We report the identification of SH ro-vibrational lines in the
published high-resolution infrared spectrum of the S-type star, R And. This is
the first astronomical detection of this molecule. The lines show inverse
P-Cygni profiles, indicating infall motion of the molecular layer due to
stellar pulsation. A simple spherical shell model with a constant infall
velocity is adopted to determine the condition of the layer. It is found that a
single excitation temperature of 2200 K reproduces the observed line
intensities satisfactory. SH is located in a layer from 1.0 to ~1.1 stellar
radii, which is moving inward with a velocity of 9 km s-1. These results are
consistent with the previous measurements of CO transitions. The
estimated molecular abundance SH/H is 1x10^-7, consistent with a thermal
equilibrium calculation.Comment: 10 pages, 2 figures. Accepted for publication in ApJ Letter
A variability study of the Seyfert 2 galaxy NGC 6300 with XMM-Newton
We present the results of timing analysis of the XMM-Newton observation of
the Seyfert 2 galaxy NGC 6300. The hard X-ray spectrum above 2 keV consists of
a Compton-thin-absorbed power law, as is often seen in Seyfert 2 galaxies. We
clearly detected rapid time variability on a time scale of about 1000 s from
the light curve above 2 keV. The excess variance of the time variability
(sigma2_RMS) is calculated to be ~0.12, and the periodogram of the light curve
is well represented by a power law function with a slope of 1.75. In contrast
with previous results from Seyfert 2 nuclei, these variability characteristics
are consistent with those of Seyfert 1 galaxies. This consistency suggests that
NGC 6300 has a similar black hole mass and accretion properties as Seyfert 1
galaxies. Using the relation between time variability and central black hole
mass by Hayashida et al. (1998), the black hole mass of NGC 6300 is estimated
to be ~2.8x10^5 Mo. Taking uncertainty of this method into account, the black
hole mass is less than 10^7 Mo. Taking the bolometric luminosity of 3.3x10^43
erg/s into consideration, this yields an accretion rate of > 0.03 of the
Eddington value, and comparable with estimates from Seyfert 1 galaxies using
this method. The time variability analysis suggests that NGC 6300 actually has
a Seyfert 1 nucleus obscured by a thick matter, and more generally provides a
new pillar of support for the unified model of Seyfert galaxies based on
obscuration.Comment: 11 pages, 6 figures, accepted for publication in Ap
Growth of a smooth CaF 2 layer on NdFeAsO thin film
We studied the method to grow a smooth and flat CaF 2 layer on NdFeAsO thin films since CaF 2 is a promising candidate material for the barrier layer of a superconducting junction. When the CaF 2 layer was grown at 800°C, the surface was very rough because {111} facets had grown preferentially. However, when CaF 2 was grown at lower temperatures and post-annealed in situ at 800°C for 30 min the facets were eliminated and a CaF 2 layer with a smooth surface was obtained. Fluorine diffusing from CaF 2 into NdFeAsO was observed when CaF 2 was grown at high temperatures, but the diffusion was suppressed by lowering the growth temperature to 400°C
Are the jets accelerated from the disk coronas in some active galactic nuclei?
We use a sample of radio-loud active galactic nuclei (AGNs) with estimated
central black hole masses to explore their jet formation mechanisms. The jet
power of AGNs is estimated from their extended radio luminosity. It is found
that the jets in several AGNs of this sample are too powerful to be extracted
from the standard thin accretion disks or rapidly spinning black holes
surrounded by standard thin disks. If the advection dominated accretion flows
(ADAFs) are present in these AGNs, their bright optical continuum luminosity
cannot be produced by pure-ADAFs due to their low accretion rates and low
radiation efficiency, unless the ADAFs transit to standard thin disks at some
radii . If this is the case, we find that the dimensionless
accretion rates as high as 0.05 and transition from ADAFs to standard thin
disks at rather small radii around 20GM/c^2 are required to explain their
bright optical continuum emission. We propose that the disk-corona structure is
present at least in some AGNs in this sample. The plasmas in the corona are
very hot, and the pressure scale-height of the corona H\sim R. Powerful jets
with Q_jet \sim L_bol (bolometric luminosity) can form by the large-scale
magnetic fields created by dynamo processes in the disk corona of some AGNs.
The maximal jet power extractable from the corona Q_jet^max\le 0.6L_c (L_c is
the corona luminosity) is expected by this jet formation scenario. The
statistic results on the sample of AGNs are consistent with the predictions of
this scenario. Finally, the possibility that the jet is driven from a
super-Keplerian rotating hot layer located between the corona and the cold disk
is discussed. We find that, in principle, this layer can also produce a
powerful jet with Q_jet\sim L_bol.Comment: 9 pages, accepted for publication in Ap
Force fluctuation in a driven elastic chain
We study the dynamics of an elastic chain driven on a disordered substrate
and analyze numerically the statistics of force fluctuations at the depinning
transition. The probability distribution function of the amplitude of the slip
events for small velocities is a power law with an exponent
depending on the driving velocity. This result is in qualitative agreement with
experimental measurements performed on sliding elastic surfaces with
macroscopic asperities. We explore the properties of the depinning transition
as a function of the driving mode (i.e. constant force or constant velocity)
and compute the force-velocity diagram using finite size scaling methods. The
scaling exponents are in excellent agreement with the values expected in
interface models and, contrary to previous studies, we found no difference in
the exponents for periodic and disordered chains.Comment: 8 page
Statistical Consequences of Devroye Inequality for Processes. Applications to a Class of Non-Uniformly Hyperbolic Dynamical Systems
In this paper, we apply Devroye inequality to study various statistical
estimators and fluctuations of observables for processes. Most of these
observables are suggested by dynamical systems. These applications concern the
co-variance function, the integrated periodogram, the correlation dimension,
the kernel density estimator, the speed of convergence of empirical measure,
the shadowing property and the almost-sure central limit theorem. We proved in
\cite{CCS} that Devroye inequality holds for a class of non-uniformly
hyperbolic dynamical systems introduced in \cite{young}. In the second appendix
we prove that, if the decay of correlations holds with a common rate for all
pairs of functions, then it holds uniformly in the function spaces. In the last
appendix we prove that for the subclass of one-dimensional systems studied in
\cite{young} the density of the absolutely continuous invariant measure belongs
to a Besov space.Comment: 33 pages; companion of the paper math.DS/0412166; corrected version;
to appear in Nonlinearit
- …