31 research outputs found

    Influence of pulsed electromagnetic field as a pre-sowing treatment on germination, plant growth and yield of broad beans

    Get PDF
    Magnetic field is a variable abiotic factor, like temperature, air, soil and water that interacts with the living organisms. The use of different types of magnetic field at many different plant species is increasing and the results are promising. A two-year field experiment was established following a completely randomized design, to investigate the effect of pre-sowing magnetic field treatment for 0, 15, 30 and 45 min on three broad bean varieties. The obtained results showed that the treatment of seeds with pulsed electromagnetic field increased germination percentage, chlorophyll content, leaf area, photosynthetic rate, transpiration rate, stomatal conductance and dry weight. In general, the exposure of seeds for 15 min, gave the highest values compared to the control treatments for the three varieties used. A very interesting result is the fact that although there was an influence of the exposure of magnetic field on the dry weight of the plants, there was not a positive or a negative influence on the seed yield for both years. This means that magnetic field enhanced the vegetative development of the broad beans, but it had no effect on the reproductive development. The results indicate that magnetic field can be used in the cases that the productive direction of the cultivation of broad beans is for livestock forage and silage, as the pre-sowing treatment of seeds had a positive effect on plant dry weight. *** In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. The article is to be paginated when the complete issue will be ready for publishing (Volume 48, Issue 3, 2020). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue

    Seed Treatment Techniques to Improve Germination of Wild Asparagus (Asparagus acutifolius L.), a Potential New Crop

    Get PDF
    Pre-sowing seed treatment techniques of stratification and scarification were used in order to find the most appropriate method to overcome dormancy of wild asparagus (Asparagus acutifolius L.) seeds. An indoor and an outdoor experiment were carried out at the Agricultural University of Athens. For the indoor experiment, the pre-sowing treatments of stratification (fresh and stratified seeds) and scarification (non-scarified, mechanical scarification and chemical scarification with sulfuric acid) were used as the main treatments, and three different temperatures (15, 20 and 25 °C) as sub-treatments. For the outdoor experiment, there were only the treatments of stratification and scarification. The stratification of asparagus seeds was found to have a positive effect on germination and vigor indices compared to non-stratified (fresh) seeds. The highest germination percentage, vigor index I and II were recorded with the stratified seeds that had been mechanically scarified in both indoor and outdoor conditions. The results indicate that just the scarification cannot improve germination of fresh collected seeds of wild asparagus. Stratification increased the germination percentage from 2.7-6.6% to 45.1-75.3%. The mechanical and the chemical scarification had a positive effect on the root length compared to the non-scarified seeds that have been stratified. These pre-sowing treatments can increase the germination percentage and produce vigorous seedlings that can be used to establish plantations of this potential new crop

    Growth Analysis of Quinoa (Chenopodium quinoa Willd.) in Response to Fertilization and Soil Tillage

    Get PDF
    Growth analysis is an appropriate method for plant response to various environmental and cultural conditions during plant life. A 2-year experiment was conducted to evaluate the effect of soil tillage and fertilization on the growth and growth parameters of quinoa crop and to determine the association between yield and growth characteristics at both the single plant and crop stand level. The experiment was laid out in a split-plot design with two replicates, two main plots [conventional (CT) and minimum tillage (MT)] and four sub-plots [fertilization treatments: untreated, inorganic fertilization of 100 (N1) and 200 kg N ha-1 (N2) and sheep manure]. The highest absolute growth rate (AGR) and crop growth rate (CGR) values were recorded between the middle of vegetative growth stage and the beginning of anthesis (50-75 DAS) under conventional tillage coupled with manure (AGR: 0.4577 g day-1, CGR: 11.44 g m-2 day-1) and with N2 treatment (AGR: 0.4521 g day-1, CGR: 11.31 g m-2 day-1). Concerning specific leaf area (SLA), the highest value (150.58 cm2 g-1) was found at 75 DAS in N2 treatment. Leaf area index (LAI) were positively affected by soil tillage and fertilization with greatest values found under conventional tillage coupled with N2 treatment (5.110 m2 m-2). The highest seed yield was observed in N2 treatment (2488 and 2388 kg ha-1 under CT and MT, respectively). As a conclusion, the cultivation under conventional tillage and the increasing levels of applied nitrogen up to 200 kg N ha-1 increases crop growth and yield

    Seed oil content, oil yield and fatty acids composition of black mustard [Brassica nigra (L.) Koch] in response to fertilization and plant density

    Get PDF
    The cultivation of black mustard [Brassica nigra (L.) Koch] has recently become increasingly popular and there is a raising demand for its oil and seeds from the food, pharmaceutical, and cosmetic industries. A 2-year experiment was conducted in a split-plot design with three replications, two main plots (plant densities: 46 and 76 plants m-2) and four sub-plots (fertilization treatments: control, urea with and without urease and nitrification inhibitors, and compost) to evaluate the fertilization and plant density effect on seed oil content, oil yield, and fatty acids composition of black mustard under Mediterranean environment. The seed yield, oil content and yield were positively influenced by the increase of available nitrogen and negatively by the increase of plant density, with their highest values recorded in the low-density and urea with double inhibitors. In response to the quality characteristics of seed oil, low-density compost application raised the quantities of polyunsaturated fatty acids (PUFA). In conclusion, plant densities higher than 46 plants m-2 result in lower seed yield, oil content and yield, while the inorganic fertilization effect, specifically with urea with double inhibitors, was equally important in seed and oil yield; however, when the seed and/or oil are used for their nutraceutical and medicinal value, the use of compost is recommended, resulting in a significant increase in PUFA content

    Performance of fourteen genotypes of durum wheat under Eastern Mediterranean conditions

    Get PDF
    Durum wheat is used as raw material for many foods. Climate change might be responsible for larger or smaller changes in crop yields. For the combined assessment of climate and crop, growing degree days (GDDs) have a crucial role. Two experimental lines and twelve commercial wheat (Triticum durum) varieties from diverse backgrounds were cultivated to compare their crop properties, yield, and protein content in terms of GDDs. The experiment was established in typical Mediterranean environment, using a randomized complete block design with blocks of varieties and lines for two growing seasons. For all varieties, GDDs to head emergence was affected by factor year, whereas GDDs from head emergence to harvest were influenced by both varieties and year. Protein content (%) was not affected by genotypes. Factor of variety and interaction variety × year had an impact on vitreousness; it was ranged from 79.75 % (‘Makaras’ variety) to 44.00 % (‘Levante’ variety). Yield had no statistically significant difference among varieties/lines. In durum wheat cultivation, up to head emergence, when GDDs increased, yield would be declined in contrast to GDDs from emergence to harvest; with the increasing of GDDs to harvest, yield was climbed. Nowadays, the integrations of and interpretation of GDDs in the evaluation of crop performance seem vital
    corecore