2,142 research outputs found

    Worst-Case Optimal Multi-Armed Gaussian Best Arm Identification with a Fixed Budget

    Full text link
    This study investigates the experimental design problem for identifying the arm with the highest expected outcome, referred to as best arm identification (BAI). In our experiments, the number of treatment-allocation rounds is fixed. During each round, a decision-maker allocates an arm and observes a corresponding outcome, which follows a Gaussian distribution with variances that can differ among the arms. At the end of the experiment, the decision-maker recommends one of the arms as an estimate of the best arm. To design an experiment, we first discuss lower bounds for the probability of misidentification. Our analysis highlights that the available information on the outcome distribution, such as means (expected outcomes), variances, and the choice of the best arm, significantly influences the lower bounds. Because available information is limited in actual experiments, we develop a lower bound that is valid under the unknown means and the unknown choice of the best arm, which are referred to as the worst-case lower bound. We demonstrate that the worst-case lower bound depends solely on the variances of the outcomes. Then, under the assumption that the variances are known, we propose the Generalized-Neyman-Allocation (GNA)-empirical-best-arm (EBA) strategy, an extension of the Neyman allocation proposed by Neyman (1934). We show that the GNA-EBA strategy is asymptotically optimal in the sense that its probability of misidentification aligns with the lower bounds as the sample size increases infinitely and the differences between the expected outcomes of the best and other suboptimal arms converge to the same values across arms. We refer to such strategies as asymptotically worst-case optimal

    Robust Covariate Shift Adaptation for Density-Ratio Estimation

    Full text link
    Consider a scenario where we have access to train data with both covariates and outcomes while test data only contains covariates. In this scenario, our primary aim is to predict the missing outcomes of the test data. With this objective in mind, we train parametric regression models under a covariate shift, where covariate distributions are different between the train and test data. For this problem, existing studies have proposed covariate shift adaptation via importance weighting using the density ratio. This approach averages the train data losses, each weighted by an estimated ratio of the covariate densities between the train and test data, to approximate the test-data risk. Although it allows us to obtain a test-data risk minimizer, its performance heavily relies on the accuracy of the density ratio estimation. Moreover, even if the density ratio can be consistently estimated, the estimation errors of the density ratio also yield bias in the estimators of the regression model's parameters of interest. To mitigate these challenges, we introduce a doubly robust estimator for covariate shift adaptation via importance weighting, which incorporates an additional estimator for the regression function. Leveraging double machine learning techniques, our estimator reduces the bias arising from the density ratio estimation errors. We demonstrate the asymptotic distribution of the regression parameter estimator. Notably, our estimator remains consistent if either the density ratio estimator or the regression function is consistent, showcasing its robustness against potential errors in density ratio estimation. Finally, we confirm the soundness of our proposed method via simulation studies
    • …
    corecore