479 research outputs found

    Superconducting properties of mesoscopic cylinders with enhanced surface superconductivity

    Full text link
    The superconducting state of an infinitely long superconducting cylinder surrounded by a medium which enhances its superconductivity near the boundary is studied within the nonlinear Ginzburg-Landau theory. This enhancement can be due to the proximity of another superconductor or due to surface treatment. Quantities like the free energy, the magnetization and the Cooper-pair density are calculated. Phase diagrams are obtained to investigate how the critical field and the critical temperature depend on this surface enhancement for different values of the Ginzburg-Landau parameter \kappa. Increasing the superconductivity near the surface leads to higher critical fields and critical temperatures. For small cylinder diameters only giant vortex states nucleate, while for larger cylinders multivortices can nucleate. The stability of these multivortex states also depends on the surface enhancement. For type-I superconductors we found the remarkable result that for a range of values of the surface extrapolation length the superconductor can transit from the Meissner state into superconducting states with vorticity L > 1. Such a behaviour is not found for the case of large \kappa, i.e. type-II superconductivity.Comment: submitted to Phys. Rev.

    Dephasing time of disordered two-dimensional electron gas in modulated magnetic fields

    Full text link
    The dephasing time of disordered two-dimensional electron gas in a modulated magnetic field is studied. It is shown that in the weak inhomogeneity limit, the dephasing rate is proportional to the field amplitude, while in strong inhomogeneity limit the dependence is quadratic. It is demonstrated that the origin of the dependence of dephasing time on field amplitude lies in the nature of corresponding single-particle motion. A semiclassical Monte Carlo algorithm is developed to study the dephasing time, which is of qualitative nature but efficient in uncovering the dependence of dephasing time on field amplitude for arbitrarily complicated magnetic-field modulation. Computer simulations support analytical results. The crossover from linear to quadratic dependence is then generalized to the situation with magnetic field modulated periodically in one direction with zero mean, and it is argued that this crossover can be expected for a large class of modulated magnetic fields.Comment: 8 pages, 2 figure

    Structural and doping effects in the half-metallic double perovskite A2A_2CrWO6_6

    Full text link
    he structural, transport, magnetic and optical properties of the double perovskite A2A_2CrWO6_6 with A=Sr, Ba, CaA=\text{Sr, Ba, Ca} have been studied. By varying the alkaline earth ion on the AA site, the influence of steric effects on the Curie temperature TCT_C and the saturation magnetization has been determined. A maximum TC=458T_C=458 K was found for Sr2_2CrWO6_6 having an almost undistorted perovskite structure with a tolerance factor f1f\simeq 1. For Ca2_2CrWO6_6 and Ba2_2CrWO6_6 structural changes result in a strong reduction of TCT_C. Our study strongly suggests that for the double perovskites in general an optimum TCT_C is achieved only for f1f \simeq 1, that is, for an undistorted perovskite structure. Electron doping in Sr2_2CrWO6_6 by a partial substitution of Sr2+^{2+} by La3+^{3+} was found to reduce both TCT_C and the saturation magnetization MsM_s. The reduction of MsM_s could be attributed both to band structure effects and the Cr/W antisites induced by doping. Band structure calculations for Sr2_2CrWO6_6 predict an energy gap in the spin-up band, but a finite density of states for the spin-down band. The predictions of the band structure calculation are consistent with our optical measurements. Our experimental results support the presence of a kinetic energy driven mechanism in A2A_2CrWO6_6, where ferromagnetism is stabilized by a hybridization of states of the nonmagnetic W-site positioned in between the high spin Cr-sites.Comment: 14 pages, 10 figure

    Field-Induced Magnetic Ordering in the Quantum Spin System KCuCl3_3

    Full text link
    KCuCl3_3 is a three-dimensional coupled spin-dimer system and has a singlet ground state with an excitation gap Δ/kB=31{\Delta}/k_{\rm B}=31 K. High-field magnetization measurements for KCuCl3_3 have been performed in static magnetic fields of up to 30 T and in pulsed magnetic fields of up to 60 T. The entire magnetization curve including the saturation region was obtained at T=1.3T=1.3 K. From the analysis of the magnetization curve, it was found that the exchange parameters determined from the dispersion relations of the magnetic excitations should be reduced, which suggests the importance of the renormalization effect in the magnetic excitations. The field-induced magnetic ordering accompanied by the cusplike minimum of the magnetization was observed as in the isomorphous compound TlCuCl3_3. The phase boundary was almost independent of the field direction, and is represented by the power law. These results are consistent with the magnon Bose-Einstein condensation picture for field-induced magnetic ordering.Comment: 9 pages, 7 figures, 9 eps files, revtex styl

    Flux-lattice melting in two-dimensional disordered superconductors

    Full text link
    The flux line lattice melting transition in two-dimensional pure and disordered superconductors is studied by a Monte Carlo simulation using the lowest Landau level approximation and quasi-periodic boundary condition on a plane. The position of the melting line was determined from the diffraction pattern of the superconducting order parameter. In the clean case we confirmed the results from earlier studies which show the existence of a quasi-long range ordered vortex lattice at low temperatures. Adding frozen disorder to the system the melting transition line is shifted to slightly lower fields. The correlations of the order parameter for translational long range order of the vortex positions seem to decay slightly faster than a power law (in agreement with the theory of Carpentier and Le Doussal) although a simple power law decay cannot be excluded. The corresponding positional glass correlation function decays as a power law establishing the existence of a quasi-long range ordered positional glass formed by the vortices. The correlation function characterizing a phase coherent vortex glass decays however exponentially ruling out the possible existence of a phase coherent vortex glass phase.Comment: 12 pages, 21 figures, final version to appear in Phys. Rev.

    Vortex states in superconducting rings

    Full text link
    The superconducting state of a thin superconducting disk with a hole is studied within the non-linear Ginzburg-Landau theory in which the demagnetization effect is accurately taken into account. We find that the flux through the hole is not quantized, the superconducting state is stabilized with increasing size of the hole for fixed radius of the disk, and a transition to a multi-vortex state is found if the disk is sufficiently large. Breaking the circular summetry through a non central location of the hole in the disk enhances the multi-vortex state.Comment: 11 pages, 23 figures (postscript). To appear in Physical Review B, Vol. 61 (2000

    Dependence of the vortex configuration on the geometry of mesoscopic flat samples

    Full text link
    The influence of the geometry of a thin superconducting sample on the penetration of the magnetic field lines and the arrangement of vortices are investigated theoretically. We compare superconducting disks, squares and triangles with the same surface area having nonzero thickness. The coupled nonlinear Ginzburg-Landau equations are solved self-consistently and the important demagnetization effects are taken into account. We calculate and compare quantities like the free energy, the magnetization, the Cooper-pair density, the magnetic field distribution and the superconducting current density for the three geometries. For given vorticity the vortex lattice is different for the three geometries, i.e. it tries to adapt to the geometry of the sample. This also influences the stability range of the different vortex states. For certain magnetic field ranges we found a coexistence of a giant vortex placed in the center and single vortices toward the corners of the sample. Also the H-T phase diagram is obtained.Comment: 9 pages, 17 figures (submitted to Phys. Rev. B

    The global carbon budget 1959-2011

    Get PDF
    Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future

    Spallative ablation of dielectrics by X-ray laser

    Full text link
    Short laser pulse in wide range of wavelengths, from infrared to X-ray, disturbs electron-ion equilibrium and rises pressure in a heated layer. The case where pulse duration τL\tau_L is shorter than acoustic relaxation time tst_s is considered in the paper. It is shown that this short pulse may cause thermomechanical phenomena such as spallative ablation regardless to wavelength. While the physics of electron-ion relaxation on wavelength and various electron spectra of substances: there are spectra with an energy gap in semiconductors and dielectrics opposed to gapless continuous spectra in metals. The paper describes entire sequence of thermomechanical processes from expansion, nucleation, foaming, and nanostructuring to spallation with particular attention to spallation by X-ray pulse

    Ground state of the three-band Hubbard model

    Full text link
    The ground state of the two-dimensional three-band Hubbard model in oxide superconductors is investigated by using the variational Monte Carlo method. The Gutzwiller-projected BCS and spin- density wave (SDW) functions are employed in the search for a possible ground state with respect to dependences on electron density. Antiferromagnetic correlations are considerably enhanced near half-filling. It is shown that the d-wave state may exist away from half-filling for both the hole and electron doping cases. The overall structure of the phase diagram obtained by the calculations qualitatively agrees with experimental indications. The superconducting condensation energy is in reasonable agreement with the experimental value obtained from specific heat and critical magnetic field measurements for optimally doped samples. The inhomogeneous SDW state is also examined near 1/8-hole doping.Comment: 10 pages, 17 figure
    corecore