407 research outputs found
Low frequency excitations of C60 chains inserted inside single-walled carbon nanotubes
The low frequency excitations of C60 chains inserted inside single-walled
carbon nanotubes (SWNTs) have been studied by inelastic neutron scattering
(INS) on a high quality sample of peapods. The comparison of the
neutron-derived generalized phonon density of states (GDOS) of the peapods
sample with that of a raw SWNTs allows the vibrational properties of the C60
chains encapsulated in the hollow core of the SWNTs to be probed. Lattice
dynamical models are used to calculate the GDOS of chains of monomers, dimers
and polymers inserted into SWNTs, which are compared to the experimental data.
The presence of strong interactions between C60 cages inside the nanotube is
clearly demonstrated by an excess of mode density in the frequency range around
10 meV. However, the presence of a quasi-elastic signal indicates that some of
the C60\'s undergo rotational motion. This suggests that peapods are made from
a mixture of C60 monomers and C60 n-mer (dimer, trimer ... polymer) structures
Pressure screening in the interior of primary shells in double-wall carbon nanotubes
The pressure response of double-wall carbon nanotubes has been investigated
by means of Raman spectroscopy up to 10 GPa. The intensity of the radial
breathing modes of the outer tubes decreases rapidly but remain observable up
to 9 GPa, exhibiting a behavior similar (but less pronounced) to that of
single-wall carbon nanotubes, which undergo a shape distortion at higher
pressures. In addition, the tangential band of the external tubes broadens and
decreases in amplitude. The corresponding Raman features of the internal tubes
appear to be considerably less sensitive to pressure. All findings lead to the
conclusion that the outer tubes act as a protection shield for the inner tubes
whereas the latter increase the structural stability of the outer tubes upon
pressure application.Comment: PDF with 15 pages, 3 figures, 1 table; submitted to Physical Review
On the diffraction pattern of C60 peapods
We present detailed calculations of the diffraction pattern of a powder of
bundles of C peapods. The influence of all pertinent structural
parameters of the bundles on the diffraction diagram is discussed, which should
lead to a better interpretation of X-ray and neutron diffraction diagrams. We
illustrate our formalism for X-ray scattering experiments performed on peapod
samples synthesized from 2 different technics, which present different
structural parameters. We propose and test different criteria to solve the
difficult problem of the filling rate determination.Comment: Sumitted 19 May 200
Transition from a Tomonaga-Luttinger liquid to a Fermi liquid in potassium intercalated bundles of single wall carbon nanotubes
We report on the first direct observation of a transition from a
Tomonaga-Luttinger liquid to a Fermi liquid behavior in potassium intercalated
mats of single wall carbon nanotubes (SWCNT). Using high resolution
photoemission spectroscopy an analysis of the spectral shape near the Fermi
level reveals a Tomonaga-Luttinger liquid power law scaling in the density of
states for the pristine sample and for low dopant concentration. As soon as the
doping is high enough to fill bands of the semiconducting tubes a distinct
transition to a bundle of only metallic SWCNT with a scaling behavior of a
normal Fermi liquid occurs. This can be explained by a strong screening of the
Coulomb interaction between charge carriers and/or an increased hopping matrix
element between the tubes.Comment: 5 pages, 4 figure
Interaction between concentric Tubes in DWCNTs
A detailed investigation of the Raman response of the inner tube radial
breathing modes (RBMs) in double-wall carbon nanotubes is reported. It revealed
that the number of observed RBMs is two to three times larger than the number
of possible tubes in the studied frequency range. This unexpected increase in
Raman lines is attributed to a splitting of the inner tube response. It is
shown to originate from the possibility that one type of inner tube may form in
different types of outer tubes and the fact that the inner tube RBM frequency
depends on the diameter of the enclosing tube. Finally, a comparison of the
inner tube RBMs and the RBMs of tubes in bundles gave clear evidence that the
interaction in a bundle is stronger than the interaction between inner and
outer tubes.Comment: 6 pages, 7 figures, submitted to Eur. Phys. J.
Transport Properties of Carbon Nanotube C Peapods
We measure the conductance of carbon nanotube peapods from room temperature
down to 250mK. Our devices show both metallic and semiconducting behavior at
room temperature. At the lowest temperatures, we observe single electron
effects. Our results suggest that the encapsulated C molecules do not
introduce substantial backscattering for electrons near the Fermi level. This
is remarkable given that previous tunneling spectroscopy measurements show that
encapsulated C strongly modifies the electronic structure of a nanotube
away from the Fermi level.Comment: 9 pages, 4 figures. This is one of two manuscripts replacing the one
orginally submitted as arXiv:cond-mat/0606258. The other one is
arXiv:0704.3641 [cond-mat
- …