15 research outputs found

    Molecular Dynamics and Docking Investigations of Several Zoanthamine- Type Marine Alkaloids as Matrix Metaloproteinase-1 Inhibitors

    Get PDF
    Zoanthamine-type alkaloids display a wide spectrum of biological effects. This study aimed to examine the inhibitory effects of norzoanthamine and its ten homologues of zoanthamine class on human fibroblast collagenase by modeling a three-dimensional structure of the ligands at collagenase using energy minimization, docking, molecular dynamics simulation and MM-PB/GBSA binding free energy calculations. The results showed that zoanthamide, zooxathellamine and enol-iminium form of norzoanthamine, with lower binding free energies than other compounds, are potent inhibitors of collagenase. However, the enol-iminium form of norzoanthamine showed a more inhibitory activity against collagenase than its keto form. This suggests that it can be used for treatment of many diseases such as osteoporosis, autoimmune diseases, and cancer. Zinc-binding residues such as His 118, His 122 and His 128 for hydrogen bonds and Leu 81, Tyr 110, Val 115, Leu 126, Pro 138, Ser 139 for hydrophobic interactions should be considered for designing an inhibitor for collagenase. Our theoretical results and MM/GBSA binding free energy calculations are consistent with experimental studies. Abbreviation MD: Molecular dynamics; RMSD: Root mean square deviation; MM-PB/GBSA: Molecular mechanics Poisson-Boltzmann/General Born surface area, DFT: density functional theory, B3LYP: Becke, three-parameter, Lee-Yang-Parr, RESP: Restrained electrostatic surfacepotentia

    In silico designing and creation a new generation of reteplase with more fibrin specificity

    Get PDF
    Introduction: Reteplase is a fibrin-specific thrombolytic drug and non-glycosylated modified recombinant form of human tissue plasminogen activator (t-PA). It is containing kringle-2 and serine protease domains but the epidermal growth factor and fibronectin finger domains are absent. The lack of finger domain in reteplase cause decrease fibrin specificity. Since the enhancing fibrin specificity is one of the aim for development new thrombolytic drug, due to decreasing side effect such as hemorrhage, also reteplase is non-glycosylated and can be produced in bacterial system at low cost, in this study a new generation of reteplase designed with more fibrin specificity.  Methods and Results: According to the sequence of protein drugswith more fibrin specificity, mutations in reteplase sequence consist of substitution mutation in Kringle 2 domains and adding sequence of mutated finger domain to reteplase sequence. 3D structure of this new reteplase was created by Modeller9.17 software and then simulated by Gromacs 5 software for 20 ns. Docking simulation was performed between new and wild reteplase with fibrin by HADDOCK server separately. The results showed that new reteplase has better interaction with fibrin compared with wild type (table1). Parameter Wild reteplase New  reteplase HADDOCK score* -35.8 +/- 8.3 -43.2 +/- 21.3             *More negative score is better score  Conclusions: In this study a new generation of reteplase with more fibrin specificity was designed in silico. Since the production of reteplase has low cost compared with tPA, improvement its structure to desirable features such as increasing fibrin specificity, can be a way to achieve a favorable thrombolytic drug

    Molecular dynamics and docking investigations of several zoanthamine-type marine alkaloids as matrix metaloproteinase-1 inhibitors

    Full text link
    Zoanthamine-type alkaloids display a wide spectrum of biological effects. This study aimed to examine the inhibitory effects of norzoanthamine and its ten homologues of zoanthamine class on human fibroblast collagenase by modeling a three-dimensional structure of the ligands at collagenase using energy minimization, docking, molecular dynamics simulation and MM-PB/GBSA binding free energy calculations. The results showed that zoanthamide, zooxathellamine and enol-iminium form of norzoanthamine, with lower binding free energies than other compounds, are potent inhibitors of collagenase. However, the enol-iminium form of norzoanthamine showed a more inhibitory activity against collagenase than its keto form. This suggests that it can be used for treatment of many diseases such as osteoporosis, autoimmune diseases, and cancer. Zinc-binding residues such as His 118, His 122 and His 128 for hydrogen bonds and Leu 81, Tyr 110, Val 115, Leu 126, Pro 138, Ser 139 for hydrophobic interactions should be considered for designing an inhibitor for collagenase. Our theoretical results and MM/GBSA binding free energy calculations are consistent with experimental studies

    Designing a new tetrapeptide to inhibit the BIR3 domain of the XIAP protein via molecular dynamics simulations

    Full text link
    The XIAP protein is a member of apoptosis proteins family. The XIAP protein plays a central role in the inhibition of apoptosis and consists of three Baculoviral IAP Repeat domains. The BIR3 domain binds directly to the N-terminal of caspase-9 and therefore it inhibits apoptosis. N-terminal tetrapeptide region of SMAC protein can bind to BIR3, inhibit it and subsequently induce apoptosis. In this study, fifteen tetrapeptides were docked into the BIR3 domain and then 10 ns molecular dynamics simulations were performed on each of the BIR3-peptide complex obtained from docking. MM/PBSA method was subsequently used to calculate the binding free energy of peptides to BIR3. The results of MM/PBSA method were in good coordination with docking and existing expermental results.  The results showed the most potent peptides with the lowest binding free energy for binding to BIR3 included ATPF, AKPW and ARPF peptides. Also, investigation of bonds between these peptides and BIR3 domain in the final structure of complexes showed that Leu 307, Thr 308, Glu 314 and Tyr 324 of the BIR3 domain were essential for binding of peptides. Energy decomposition results for binding these peptides to the BIR3 domain during MD simulation was inconsistent with previous results and approved the roles of the same residues. The higher affinity of these peptides relative to native peptide (AVPI) and comparing them with other peptides revealed that the existence of positive charge in the second position and the existence of the aromatic group in the fourth position led to more binding affinity

    In-silico study MM/GBSA binding free energy and molecular dynamics simulation of some designed remdesivir derivatives as the inhibitory potential of SARS-CoV-2 main protease

    Full text link
    Background and purpose: Coronavirus disease (COVID-19) is one ofthe greatest challenges ofthe twentieth century. Recently, in silico tools help to predict new inhibitors of SARS-CoV-2. In this study, the new compounds based on the remdesivir structure (12 compounds) were designed. Experimental approach: The main interactions of remdesivir and designed compounds were investigated in the 3CLpro active site. The binding free energy of compounds by the MM-GBSA method was calculated and the best compound (compound 12 with the value of -88.173 kcal/mol) was introduced to the molecular dynamics simulation study. Findings/Results: The simulation results were compared with the results of protein simulation without the presence of an inhibitor and in the presence of remdesivir. Additionally, the RMSD results for the protein backbone showed that compound 12 in the second 50 nanoseconds has less fluctuation than the protein alone and in the presence of remdesivir, which indicates the stability of the compound in the active site of the Mpro protein. Furthermore, protein compactness was investigated in the absence of compounds and the presence of compound 12 and remdesivir. The Rg diagram shows a fluctuation of approximately 0.05 A, which indicates the compressibility of the protein in the presence and absence of compounds. The results of the RMSF plot also show the stability of essential amino acids during protein binding. Conclusion and implications: Supported by the theoretical results, compound 12 could have the potential to inhibit the 3CLpro enzyme, which requires further in vitro studies and enzyme inhibition must also be confirmed at protein levels

    Theoretical design of a new chimeric protein for the treatment of breast cancer

    Full text link
    p28 and NRC peptides are two anticancer peptides with various mechanisms have shown to be effective against breast cancer. Therefore, it seems that construction of a chimeric protein containing the two peptides might cause synergistic cytotoxic effects. However, since the two peptides bear opposite charges, production of a chimeric protein in which the two moieties do not intervene each other is difficult. In this study, our goal was to find a suitable peptide linker for the new chimeric protein in a manner that none of the peptides intervene the other’s function. We selected some linkers with different characteristics and lengths and created a small library of the chimeric proteins harboring these linkers. Homology modeling and molecular dynamic simulation revealed that (PA)5P and (EAAAK)3 linkers can separate the p28 and NRC peptides effectively. Thus, the chimeric protein linked with (PA)5P or (EAAAK)3 linkers might show synergistic and stronger anticancer effects than the separate peptide moieties because they could exert their cytotoxic effects freely which is not influenced by the other part

    Evolutionary trajectories of beta-lactamase NDM and DLST cluster in <i>Pseudomonas aeruginosa</i>: finding the putative ancestor

    Full text link
    Pseudomonas aeruginosa has different antibiotic resistance pathways, such as broad-spectrum lactamases and metallo-β-lactamases (MBL), penicillin-binding protein (PBP) alteration, and active efflux pumps. Polymerase chain reaction (PCR) and sequencing methods were applied for double-locus sequence typing (DLST) and New Delhi metallo-β-lactamase (NDM) typing. We deduced the evolutionary pathways for DLST and NDM genes of P. aeruginosa using phylogenetic network. Among the analyzed isolates, 62.50% of the P. aeruginosa isolates were phenotypically carbapenem resistance (CARBR) isolates. Characterization of isolates revealed that the prevalence of blaNDM, blaVIM, blaIMP, undetermined carbapenemase, and MexAB-OprM were 27.5%, 2%, 2.5%, 12.5%, and 15%, respectively. The three largest clusters found were DLST t20–105, DLST t32–39, and DLST t32–52. The network phylogenic tree revealed that DLST t26–46 was a hypothetical ancestor for other DLSTs, and NDM-1 was as a hypothetical ancestor for NDMs. The combination of the NDM and DLST phylogenic trees revealed that DLST t32–39 and DLST tN2-N3 with NDM-4 potentially derived from DLST t26–46 along with NDM-1. Similarly, DLST t5–91 with NDM-5 diversified from DLST tN2-N3 with NDM-4. This is the first study in which DLST and NDM evolutionary routes were performed to investigate the origin of P. aeruginosa isolates. Our study showed that the utilization of medical equipment common to two centers, staff members common to two centers, limitations in treatment options, and prescription of unnecessary high levels of meropenem are the main agents that generate new types of resistant bacteria and spread resistance among hospitals.</p

    Computational design of newly engineered DARPins as HER2 receptor inhibitors for breast cancer treatment

    Full text link
    Background and purpose: Human epidermal growth factor receptor 2 (HER2) is overexpressed in approximately 25% of breast cancer patients; therefore, its inhibition is a therapeutic target in cancer treatment. Experimental approach: In this study, two new variants of designed ankyrin repeat proteins (DARPins), designated EG3-1 and EG3-2, were designed to increase their affinity for HER2 receptors. To this end, DARPin G3 was selected as a template, and six-point mutations comprising Q26E, I32V, T49A, L53H, K101R, and G124V were created on its structure. Furthermore, the 3D structures were formed through homology modeling and evaluated using molecular dynamic simulation. Then, both structures were docked to the HER2 receptor using the HADDOCK web tool, followed by 100 ns of molecular dynamics simulation for both DARPins / HER2 complexes. Findings/Results: The theoretical result confirmed both structures' stability. Molecular dynamics simulations reveal that the applied mutations on DARPin EG3-2 significantly improve the receptor binding affinity of DARPin. Conclusion and implications: The computationally engineered DARPin EG3-2 in this study could provide a hit compound for the design of promising anticancer agents targeting HER2 receptors

    In silico and in vitro effects of the I30T mutation on myelin protein zero instability in the cell membrane

    Full text link
    Charcot-Marie-Tooth (CMT) diseases are a heterogeneous group of genetic peripheral neuropathies caused by mutations in a variety of genes, which are involved in the development and maintenance of peripheral nerves. Myelin protein zero (MPZ) is expressed by Schwann cells, and MPZ mutations can lead to primarily demyelinating polyneuropathies including CMT type 1B. Different mutations demonstrate various forms of disease pathomechanisms, which may be beneficial in understanding the disease cellular pathology. Our molecular dynamics simulation study on the possible impacts of I30T mutation on the MPZ protein structure suggested a higher hydrophobicity and thus lower stability in the membranous structures. A study was also conducted to predict native/mutant MPZ interactions. To validate the results of the simulation study, the native and mutant forms of the MPZ protein were separately expressed in a cellular model, and the protein trafficking was chased down in a time course pattern. In vitro studies provided more evidence on the instability of the MPZ protein due to the mutation. In this study, qualitative and quantitative approaches were adopted to confirm the instability of mutant MPZ in cellular membranes
    corecore