1,244 research outputs found
Coulomb breakup effects on the elastic cross section of He+Bi scattering near Coulomb barrier energies
We accurately analyze the He+Bi scattering at 19 and 22.5 MeV
near the Coulomb barrier energy, using the continuum-discretized
coupled-channels method (CDCC) based on the ++He+Bi four-body
model.
The three-body breakup continuum of He is discretized by diagonalizing
the internal Hamiltonian of He in a space spanned by the Gaussian basis
functions.
The calculated elastic and total reaction cross sections are in good
agreement with the experimental data, while the CDCC calculation based on the
di-neutron model of He, i.e., the +He+Bi three-body
model, does not reproduce the data.Comment: 5 pages, 5 figures, uses REVTeX 4, submitted to Phys. Rev.
Role of quark-quark correlation in baryon structure and non-leptonic weak transitions of hyperons
We study the role of quark-quark correlation in the baryon structure and, in
particular, the hyperon non-leptonic weak decay, which is sensitive to the
correlation between quarks in the spin-0 channel. We rigorously solve
non-relativistic three-body problem for SU(3) ground state baryons to take into
account the quark-pair correlation explicitly. With the suitable attraction in
the spin-0 channel, resulting static baryon properties as well as the parity
conserving weak decay amplitudes agree with the experimental values. Special
emphasis is placed also on the effect of the SU(6) spin-flavor symmetry
breaking on the baryon structure. Although the SU(6) breaking effects on the
local behavior of the quark wave functions are considerable due to the spin-0
attraction, the calculated magnetic moments are almost the same as the naive
SU(6) expectations
Determination of S17 from 8B breakup by means of the method of continuum-discretized coupled-channels
The astrophysical factor for 7Be(p,\gamma)8B at zero energy, S17(0), is
determined from an analysis of 208Pb(8B, p+7Be)208Pb at 52 MeV/nucleon by means
of the method of continuum-discretized coupled-channels (CDCC) taking account
of all nuclear and Coulomb breakup processes. The asymptotic normalization
coefficient (ANC) method is used to extract S17(0) from the calculated
breakup-cross-section. The main result of the present paper is S17(0)=20.9
+2.0/-1.9 eV b. The error consists of 8.4% experimental systematic error and
the error due to the ambiguity in the s-wave p-7Be scattering length. This
value of S17(0) differs from the one extracted with the first-order
perturbation theory including Coulomb breakup by dipole transitions: 18.9 +/-
1.8 eV b. It turns out that the difference is due to the inclusion of the
nuclear and Coulomb-quadrupole transitions and multi-step processes of
all-order in the present work. The p-7Be interaction potential used in the CDCC
calculation is also used in the ANC analysis of 7Be(p,\gamma)8B. The value of
S17(0)=21.7 +0.62/-0.55 eV b obtained is consistent with the previous one
obtained from a precise measurement of the p-capture reaction cross section
extrapolated to zero incident energy, S17(0)=22.1 +/- 0.6 (expt) +/- 0.6 (theo)
eV b, where (theo) stands for the error in the extrapolation. Thus, the
agreement between the values of S17(0) obtained from direct 7Be(p,\gamma)8B and
indirect 8B-breakup measurements is significantly improved.Comment: 13 pages, 9 figures, published in PR
Kaon-nucleon interaction in the extended chiral SU(3) quark model
The chiral SU(3) quark model is extended to include the coupling between the
quark and vector chiral fields. The one-gluon exchange (OGE) which dominantly
governs the short-range quark-quark interaction in the original chiral SU(3)
quark model is now nearly replaced by the vector-meson exchange. Using this
model, the isospin I=0 and I=1 kaon-nucleon S, P, D, F wave phase shifts are
dynamically studied by solving the resonating group method (RGM) equation.
Similar to those given by the original chiral SU(3) quark model, the calculated
results for many partial waves are consistent with the experiment, while there
is no improvement in this new approach for the P_{13} and D_{15} channels, of
which the theoretical phase shifts are too much repulsive and attractive
respectively when the laboratory momentum of the kaon meson is greater than 300
MeV.Comment: 19 pages, 16 figures. Accepted by Phys. Rev.
Peripherality of breakup reactions
The sensitivity of elastic breakup to the interior of the projectile wave
function is analyzed. Breakup calculations of loosely bound nuclei (8B and
11Be) are performed with two different descriptions of the projectile. The
descriptions differ strongly in the interior of the wave function, but exhibit
identical asymptotic properties, namely the same asymptotic normalization
coefficient, and phase shifts. Breakup calculations are performed at
intermediate energies (40-70 MeV/nucleon) on lead and carbon targets as well as
at low energy (26 MeV) on a nickel target. No dependence on the projectile
description is observed. This result confirms that breakup reactions are
peripheral in the sense that they probe only the external part of the wave
function. These measurements are thus not directly sensitive to the total
normalization of the wave function, i.e. spectroscopic factor.Comment: Reviewed version accepted for publication in Phys. Rev. C; 1 new
section (Sec. III E), 2 new figures (Figs. 3 and 5
Stau-catalyzed Li Production in Big-Bang Nucleosynthesis
If the gravitino mass is in the region from a few GeV to a few 10's GeV, the
scalar lepton X such as stau is most likely the next lightest supersymmetry
particle. The negatively charged and long-lived X^- may form a Coulomb bound
state (A X) with a nucleus A and may affect the big-bang nucleosynthesis
through catalyzed fusion process. We calculate a production cross section of
Li6 from the catalyzed fusion (He4 X^-) + d \to Li6 + X^- by solving the
Schr\"{o}dinger equation exactly for three-body system of He4, d, and X. We
utilize the state-of-the-art coupled-channel method, which is known to be very
accurate to describe other three-body systems in nuclear and atomic reactions.
The importance of the use of appropriate nuclear potential and the exact
treatment of the quantum tunneling in the fusion process are emphasized. We
find that the astrophysical S-factor at the Gamow peak corresponding to T=10
keV is 0.038 MeV barn. This leads to the Li6 abundance from the catalyzed
process as Li6|_{CBBN}\simeq 4.3\times 10^{-11} (D/2.8\times 10^{-5})
([n_{X^-}/s]/10^{-16}) in the limit of long lifetime of X. Particle physics
implication of this result is also discussed.Comment: 16 pages, 7 figure
Continuum-discretized coupled-channels method for four-body breakup reactions
Development of the method of CDCC (Continuum-Discretized Coupled-Channels)
from the level of three-body CDCC to that of four-body CDCC is reviewed.
Introduction of the pseudo-state method based on the Gaussian expansion method
for discretizing the continuum states of two-body and three-body projectiles
plays an essential role in the development. Furthermore, introduction of the
complex-range Gaussian basis functions is important to improve the CDCC for
nuclear breakup so as to accomplish that for Coulomb and nuclear breakup. A
successful application of the four-body CDCC to He+C scattering at
18 and 229.8 MeV is reported.Comment: Latex file of revtex4 class, 14 pages, 10 figures. A talk given at
the Workshop on Reaction Mechanisms for Rare Isotope Beams, Michigan State
University, March 9-12, 2005 (to appear in an AIP Conference Proceedings
Continuum-discretized coupled-channels method for four-body nuclear breakup in He+C scattering
We propose a fully quantum-mechanical method of treating four-body nuclear
breakup processes in scattering of a projectile consisting of three
constituents, by extending the continuum-discretized coupled-channels method.
The three-body continuum states of the projectile are discretized by
diagonalizing the internal
Hamiltonian of the projectile with the Gaussian basis functions. For
He+C scattering at 18 and 229.8 MeV, the validity of the method is
tested by convergence of the elastic and breakup cross sections with respect to
increasing the number of the basis functions. Effects of the four-body breakup
and the Borromean structure of He on the elastic and total reaction cross
sections are discussed.Comment: 5 pages, 6 figures, uses REVTeX 4, submitted to Phys. Rev.
- …