157 research outputs found
Synthesis, structural and physicochemical characterization of a new type Ti6-oxo cluster protected by a cyclic imide dioxime ligand
Reaction of the cyclic ligand (2Z,6Z)-piperidine-2,6-dione dioxime with TiCl4 and KOH yielded the hexanuclear cluster K6[TiIV6(μ3-O)2(μ2-O)3(CH3O)6(μ2–η1,η1,η2-Hpidiox-O,N,O′)4(μ2–η1,η1,η2-pidiox-O,N,O′)2]·7.5CH3OH possessing a new {Ti6O5} structural motif. The cluster core {Ti6O5} is wrapped by external tripodal imide dioxime ligands, showing good solubility and stability and thus, allowing its solution to be studied by means of electrospray ionization mass spectrometry, electrochemistry and 2D NMR, c. w. EPR and UV-vis spectroscopies. Density Functional Theory (DFT) calculations reveal that the cyclo-Ti3 metallic cores exhibit metallaromaticity which is expected to contribute to the stabilization of this system
Intermediate Phases, structural variance and network demixing in chalcogenides: the unusual case of group V sulfides
We review Intermediate Phases (IPs) in chalcogenide glasses and provide a
structural interpretation of these phases. In binary group IV selenides, IPs
reside in the 2.40 < r < 2.54 range, and in binary group V selenides they shift
to a lower r, in the 2.29< r < 2.40 range. Here r represents the mean
coordination number of glasses. In ternary alloys containing equal proportions
of group IV and V selenides, IPs are wider and encompass ranges of respective
binary glasses. These data suggest that the local structural variance
contributing to IP widths largely derives from four isostatic local structures
of varying connectivity r; two include group V based quasi-tetrahedral (r =
2.29) and pyramidal (r = 2.40) units, and the other two are group IV based
corner-sharing (r = 2.40) and edge-sharing (r = 2.67) tetrahedral units.
Remarkably, binary group V (P, As) sulfides exhibit IPs that are shifted to
even a lower r than their selenide counterparts; a result that we trace to
excess Sn chains either partially (As-S) or completely (P-S) demixing from
network backbone, in contrast to excess Sen chains forming part of the backbone
in corresponding selenide glasses. In ternary chalcogenides of Ge with the
group V elements (As, P), IPs of the sulfides are similar to their selenide
counterparts, suggesting that presence of Ge serves to reign in the excess Sn
chain fragments back in the backbone as in their selenide counterparts
Synthesis, structural and physicochemical characterization of a titanium(IV) compound with the hydroxamate ligand N,2-dihydroxybenzamide
The siderophore organic ligand N,2-dihydroxybenzamide (H2dihybe) incorporates the hydroxamate group, in addition to the phenoxy group in the ortho-position and reveals a very rich coordination chemistry with potential applications in medicine, materials, and physical sciences. The reaction of H2dihybe with TiCl4 in methyl alcohol and KOH yielded the tetranuclear titanium oxo-cluster (TOC) [TiIV4(μ-O)2(HOCH3)4(μ-Hdihybe)4(Hdihybe)4]Cl4∙10H2O∙12CH3OH (1). The titanium compound was characterized by single-crystal X-ray structure analysis, ESI-MS, 13C, and 1H NMR spectroscopy, solid-state and solution UV–Vis, IR vibrational, and luminescence spectroscopies and molecular orbital calculations. The inorganic core Ti4(μ-O)2 of 1 constitutes a rare structural motif for discrete TiIV4 oxo-clusters. High-resolution ESI-MS studies of 1 in methyl alcohol revealed the presence of isotopic distribution patterns which can be attributed to the tetranuclear clusters containing the inorganic core {Ti4(μ-O)2}. Solid-state IR spectroscopy of 1 showed the presence of an intense band at ~800 cm−1 which is absent in the spectrum of the H2dihybe and was attributed to the high-energy ν(Ti2–μ-O) stretching mode. The ν(C=O) in 1 is red-shifted by ~10 cm−1, while the ν(N-O) is blue-shifted by ~20 cm−1 in comparison to H2dihybe. Density Functional Theory (DFT) calculations reveal that in the experimental and theoretically predicted IR absorbance spectra of the ligand and Ti-complex, the main bands observed in the experimental spectra are also present in the calculated spectra supporting the proposed structural model. 1H and 13C NMR solution (CD3OD) studies of 1 reveal that it retains its integrity in CD3OD. The observed NMR changes upon addition of base to a CD3OD solution of 1, are due to an acid–base equilibrium and not a change in the TiIV coordination environment while the decrease in the complex’s lability is due to the improved electron-donating properties which arise from the ligand deprotonation. Luminescence spectroscopic studies of 1 in solution reveal a dual narrow luminescence at different excitation wavelengths. The TOC 1 exhibits a band-gap of 1.98 eV which renders it a promising candidate for photocatalytic investigations
CO2 Laser-Induced Growth of Epitaxial Graphene on 6H-SiC(0001)
The thermal decomposition of SiC surface provides, perhaps, the most
promising method for the epitaxial growth of graphene on a material useful in
the electronics platform. Currently, efforts are focused on a reliable method
for the growth of large-area, low-strain epitaxial graphene that is still
lacking. We report here a novel method for the fast, single-step epitaxial
growth of large-area homogeneous graphene film on the surface of SiC(0001)
using an infrared CO2 laser (10.6 {\mu}m) as the heating source. Apart from
enabling extreme heating and cooling rates, which can control the stacking
order of epitaxial graphene, this method is cost-effective in that it does not
necessitate SiC pre-treatment and/or high vacuum, it operates at low
temperature and proceeds in the second time scale, thus providing a green
solution to EG fabrication and a means to engineering graphene patterns on SiC
by focused laser beams. Uniform, low-strain graphene film is demonstrated by
scanning electron microscopy and x-ray photoelectron, secondary ion mass, and
Raman spectroscopies. Scalability to industrial level of the method described
here appears to be realistic, in view of the high rate of CO2-laser induced
graphene growth and the lack of strict sample-environment conditions.Comment: 32 pages, 5 figures, includes Supporting Informatio
Electronic absorption spectra of pyridine and nicotine in aqueous solution with a combined molecular dynamics and polarizable QM/MM approach
The electronic absorption spectra of pyridine and nicotine in aqueous solution have been computed using a multistep approach. The computational protocol consists in studying the solute solvation with accurate molecular dynamics simulations, characterizing the hydrogen bond interactions, and calculating electronic transitions for a series of configurations extracted from the molecular dynamics trajectories with a polarizable QM/MM scheme based on the fluctuating charge model. Molecular dynamics simulations and electronic transition calculations have been performed on both pyridine and nicotine. Furthermore, the contributions of solute vibrational effect on electronic absorption spectra have been taken into account in the so called vertical gradient approximation. \ua9 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc
Alkali environments in tellurite glasses
Neutron diffraction measurements are reported for five binary alkali tellurite glasses, xM2O · (100 − x)TeO2 (containing 10 and 20 mol% K2O, 10 and 19 mol% Na2O, and 20 mol% 7Li2O), together with 23Na MAS NMR measurements for the sodium containing glasses. Differences between neutron correlation functions are used to extract information about the local environments of lithium and sodium. The Na–O bond length is 2.37(1) Å and the average Na–O coordination number, nNaO, decreases from 5.2(2) for x = 10 mol% Na2O to 4.6(1) for x = 19 mol% Na2O. The average Li–O coordination number, nLiO, is 3.9(1) for the glass with x = 20 mol% Li2O and the Li–O bond length is 2.078(2) Å. As x increases from 10 to 19 mol% Na2O, the 23Na MAS NMR peak moves downfield, confirming an earlier report of a correlation of peak position with sodium coordination number. The close agreement of the maximum in the Te–O bond distribution for sodium and potassium tellurite glasses of the same composition, coupled with the extraction of reasonable alkali coordination numbers using isostoichiometric differences, gives strong evidence that the tellurium environment in alkali tellurites is independent of the size of the modifier cation used
Novel Tm3+-doped fluorotellurite glasses with enhanced quantum efficiency
In this paper, new highly Tm3+-doped tellurite glasses with host composition 75TeO2-xZnF2-yGeO2-12PbO-3Nb2O5 [x(5-15), y(0-5) mol%] are presented and compared to the Tm-doped tellurite glasses based on the traditional host composition: 75TeO2-20ZnO-5Na2O mol%. Enhanced quantum efficiency from 3F4 level was observed for the proposed glasses and thermal stability and viscosity values make them suitable for optical fiber drawing. Besides the host composition, substantial influence of Tm3+ concentration on luminescence and lifetime of excited 3F4 and 3H4 states were discusse
- …