27 research outputs found

    Molecular characterization and expression analysis of five different elongation factor 1 alpha genes in the flatfish Senegalese sole (Solea senegalensis Kaup): Differential gene expression and thyroid hormones dependence during metamorphosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic elongation factor 1 alpha (eEF1A) is one of the four subunits composing eukaryotic translation elongation factor 1. It catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome in a GTP-dependent manner during protein synthesis, although it also seems to play a role in other non-translational processes. Currently, little information is still available about its expression profile and regulation during flatfish metamorphosis. With regard to this, Senegalese sole (<it>Solea senegalensis</it>) is a commercially important flatfish in which <it>eEF1A </it>gene remains to be characterized.</p> <p>Results</p> <p>The development of large-scale genomics of Senegalese sole has facilitated the identification of five different <it>eEF1A </it>genes, referred to as <it>SseEF1A1</it>, <it>SseEF1A2</it>, <it>SseEF1A3</it>, <it>SseEF1A4</it>, and <it>Sse42Sp50</it>. Main characteristics and sequence identities with other fish and mammalian eEF1As are described. Phylogenetic and tissue expression analyses allowed for the identification of <it>SseEF1A1 </it>and <it>SseEF1A2 </it>as the Senegalese sole counterparts of mammalian <it>eEF1A1 </it>and <it>eEF1A2</it>, respectively, and of <it>Sse42Sp50 </it>as the ortholog of <it>Xenopus laevis </it>and teleost <it>42Sp50 </it>gene. The other two elongation factors, <it>SseEF1A3 </it>and <it>SseEF1A4</it>, represent novel genes that are mainly expressed in gills and skin. The expression profile of the five genes was also studied during larval development, revealing different behaviours. To study the possible regulation of <it>SseEF1A </it>gene expressions by thyroid hormones (THs), larvae were exposed to the goitrogen thiourea (TU). TU-treated larvae exhibited lower <it>SseEF1A4 </it>mRNA levels than untreated controls at both 11 and 15 days after treatment, whereas transcripts of the other four genes remained relatively unchanged. Moreover, addition of exogenous T4 hormone to TU-treated larvae increased significantly the steady-state levels of <it>SseEF1A4 </it>with respect to untreated controls, demonstrating that its expression is up-regulated by THs.</p> <p>Conclusion</p> <p>We have identified five different <it>eEF1A </it>genes in the Senegalese sole, referred to as <it>SseEF1A1</it>, <it>SseEF1A2</it>, <it>SseEF1A3</it>, <it>SseEF1A4</it>, and <it>Sse42Sp50</it>. The five genes exhibit different expression patterns in tissues and during larval development. TU and T4 treatments demonstrate that <it>SseEF1A4 </it>is up-regulated by THs, suggesting a role in the translational regulation of the factors involved in the dramatic changes that occurs during Senegalese sole metamorphosis.</p

    Biallelic mutations in the gene encoding eEF1A2 cause seizures and sudden death in F0 mice

    Get PDF
    De novo heterozygous missense mutations in the gene encoding translation elongation factor eEF1A2 have recently been found to give rise to neurodevelopmental disorders. Children with mutations in this gene have developmental delay, epilepsy, intellectual disability and often autism; the most frequently occurring mutation is G70S. It has been known for many years that complete loss of eEF1A2 in mice causes motor neuron degeneration and early death; on the other hand heterozygous null mice are apparently normal. We have used CRISPR/Cas9 gene editing in the mouse to mutate the gene encoding eEF1A2, obtaining a high frequency of biallelic mutations. Whilst many of the resulting founder (F0) mice developed motor neuron degeneration, others displayed phenotypes consistent with a severe neurodevelopmental disorder, including sudden unexplained deaths and audiogenic seizures. The presence of G70S protein was not sufficient to protect mice from neurodegeneration in G70S/− mice, showing that the mutant protein is essentially non-functional

    Highly homologous eEF1A1 and eEF1A2 exhibit differential post-translational modification with significant enrichment around localised sites of sequence variation

    Get PDF
    Translation elongation factors eEF1A1 and eEF1A2 are 92% identical but exhibit non-overlapping expression patterns. While the two proteins are predicted to have similar tertiary structures, it is notable that the minor variations between their sequences are highly localised within their modelled structures. We used recently available high-throughput “omics” data to assess the spatial location of post-translational modifications and discovered that they are highly enriched on those surface regions of the protein that correspond to the clusters of sequence variation. This observation suggests how these two isoforms could be differentially regulated allowing them to perform distinct functions. REVIEWERS: This article was reviewed by Frank Eisenhaber and Ramanathan Sowdhamini
    corecore