18,575 research outputs found
The geography of strain: organizational resilience as a function of intergroup relations
Organizational resilience is an organization’s ability to absorb strain and preserve or
improve functioning, despite the presence of adversity. In existing scholarship there is
the implicit assumption that organizations experience and respond holistically to acute
forms of adversity. We challenge this assumption by theorizing about how adversity can
create differential strain, affecting parts of an organization rather than the whole. We
argue that relations among those parts fundamentally shape organizational resilience.
We develop a theoretical model that maps how the differentiated emergence of strain in
focal parts of an organization triggers the movements of adjoining parts to provide or
withhold resources necessary for the focal parts to adapt effectively. Drawing on core
principles of theories about intergroup relations, we theorize about three specific
pathways—integration, disavowal, and reclamation—by which responses of adjoining
parts to focal part strain shape organizational resilience. We further theorize about
influences on whether and when adjoining parts are likely to select different pathways.
The resulting theory reveals how the social processes among parts of organizations
influence member responses to adversity and, ultimately, organizational resilience. We
conclude by noting the implications for organizational resilience theory, research, and
practice.Accepted manuscrip
Position determination of a lander and rover at Mars with Earth-based differential tracking
The presence of two or more landed or orbiting spacecraft at a planet provides the opportunity to perform extremely accurate Earth-based navigation by simultaneously acquiring Doppler data and either Same-Beam Interferometry (SBI) or ranging data. Covariance analyses were performed to investigate the accuracy with which lander and rover positions on the surface of Mars can be determined. Simultaneous acquisition of Doppler and ranging data from a lander and rover over two or more days enables determination of all components of their relative position to under 20 m. Acquiring one hour of Doppler and SBI enables three dimensional lander-rover relative position determination to better than 5 m. Twelve hours of Doppler and either SBI or ranging from a lander and a low circular or half synchronous circular Mars orbiter makes possible lander absolute position determination to tens of meters
Anisotropy effects in a mixed quantum-classical Heisenberg model in two dimensions
We analyse a specific two dimensional mixed spin Heisenberg model with
exchange anisotropy, by means of high temperature expansions and Monte Carlo
simulations. The goal is to describe the magnetic properties of the compound
(NBu_{4})_{2}Mn_{2}[Cu(opba)]_{3}\cdot 6DMSO\cdot H_{2}O which exhibits a
ferromagnetic transition at . Extrapolating our analysis on the
basis of renormalisation group arguments, we find that this transition may
result from a very weak anisotropy effect.Comment: 8 pages, 10 Postscript figure
FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism
A major target of insulin signaling is the FoxO family of Forkhead transcription factors, which translocate from the nucleus to the cytoplasm following insulin-stimulated phosphorylation. Here we show that the Forkhead transcription factors FoxK1 and FoxK2 are also downstream targets of insulin action, but that following insulin stimulation, they translocate from the cytoplasm to nucleus, reciprocal to the translocation of FoxO1. FoxK1/FoxK2 translocation to the nucleus is dependent on the Akt-mTOR pathway, while its localization to the cytoplasm in the basal state is dependent on GSK3. Knockdown of FoxK1 and FoxK2 in liver cells results in upregulation of genes related to apoptosis and down-regulation of genes involved in cell cycle and lipid metabolism. This is associated with decreased cell proliferation and altered mitochondrial fatty acid metabolism. Thus, FoxK1/K2 are reciprocally regulated to FoxO1 following insulin stimulation and play a critical role in the control of apoptosis, metabolism and mitochondrial function
The Chandra Iron-L X-Ray Line Spectrum of Capella
An analysis of the iron L-shell emission in the publicly available spectrum
of the Capella binary system, as obtained by the High Energy Transmission
Grating Spectrometer on board the Chandra X-ray Observatory, is presented. The
atomic-state model, based on the HULLAC code, is shown to be especially
adequate for analyzing high-resolution x-ray spectra of this sort. Almost all
of the spectral lines in the 10 - 18 Angstrom wavelength range are identified.
It is shown that, for the most part, these lines can be attributed to emission
from L-shell iron ions in the Capella coronae. Possibilities for electron
temperature diagnostics using line ratios of Fe16+ are demonstrated. It is
shown that the observed iron-L spectrum can be reproduced almost entirely by
assuming a single electron temperature of kTe= 600 eV. This temperature is
consistent with both the measured fractional ion abundances of iron and with
the temperature derived from ratios of Fe16+ lines. A volume emission measure
of 1053 cm-3 is calculated for the iron L-shell emitting regions of the Capella
coronae indicating a rather small volume of 1029 cm3 for the emitting plasma if
an electron density of 1012 cm-3 is assumed.Comment: Accepted to Ap
A DMRG Study of Low-Energy Excitations and Low-Temperature Properties of Alternating Spin Systems
We use the density matrix renormalization group (DMRG) method to study the
ground and low-lying excited states of three kinds of uniform and dimerized
alternating spin chains. The DMRG procedure is also employed to obtain
low-temperature thermodynamic properties of these systems. We consider a 2N
site system with spins and alternating from site to site and
interacting via a Heisenberg antiferromagnetic exchange. The three systems
studied correspond to being equal to and
; all of them have very similar properties. The ground state is found
to be ferrimagnetic with total spin . We find that there is
a gapless excitation to a state with spin , and a gapped excitation to
a state with spin . Surprisingly, the correlation length in the ground
state is found to be very small for this gapless system. The DMRG analysis
shows that the chain is susceptible to a conditional spin-Peierls instability.
Furthermore, our studies of the magnetization, magnetic susceptibility
and specific heat show strong magnetic-field dependences. The product
shows a minimum as a function of temperature T at low magnetic fields; the
minimum vanishes at high magnetic fields. This low-field behavior is in
agreement with earlier experimental observations. The specific heat shows a
maximum as a function of temperature, and the height of the maximum increases
sharply at high magnetic fields. Although all the three systems show
qualitatively similar behavior, there are some notable quantitative differences
between the systems in which the site spin difference, , is large
and small respectively.Comment: 16 LaTeX pages, 13 postscript figure
Magnetic and thermal properties of 4f-3d ladder-type molecular compounds
We report on the low-temperature magnetic susceptibilities and specific heats
of the isostructural spin-ladder molecular complexes L[M(opba)]_{3\cdot
xDMSOHO, hereafter abbreviated with LM (where L =
La, Gd, Tb, Dy, Ho and M = Cu, Zn). The results show that the Cu containing
complexes (with the exception of LaCu) undergo long range magnetic
order at temperatures below 2 K, and that for GdCu this ordering is
ferromagnetic, whereas for TbCu and DyCu it is probably
antiferromagnetic. The susceptibilities and specific heats of TbCu
and DyCu above have been explained by means of a model
taking into account nearest as well as next-nearest neighbor magnetic
interactions. We show that the intraladder L--Cu interaction is the predominant
one and that it is ferromagnetic for L = Gd, Tb and Dy. For the cases of Tb, Dy
and Ho containing complexes, strong crystal field effects on the magnetic and
thermal properties have to be taken into account. The magnetic coupling between
the (ferromagnetic) ladders is found to be very weak and is probably of dipolar
origin.Comment: 13 pages, 15 figures, submitted to Phys. Rev.
An invitation to grieve: reconsidering critical incident responses by support teams in the school setting
This paper proposes that consideration could be given to an invitational intervention rather than an expectational intervention when support personnel respond to a critical incident in schools. Intuitively many practitioners know that it is necessary for guidance/counselling personnel to intervene in schools in and following times of trauma. Most educational authorities in Australia have mandated the formulation of a critical incident intervention plan. This paper defines the term critical incident and then outlines current intervention processes, discussing the efficacy of debriefing interventions. Recent literature suggests that even though it is accepted that a planned intervention is necessary, there is scant evidence as to the effectiveness of debriefing interventions in stemming later symptoms of post traumatic stress disorder. The authors of this paper advocate for an expressive therapy intervention that is invitational rather than expectational, arguing that not all people respond to trauma in the same way and to expect that they will need to recall and retell what has happened is most likely a dangerous assumption. A model of invitation using Howard Gardner’s (1983) multiple intelligences is proposed so that students are invited to grieve and understand emotionally what is happening to them following a critical incident
- …