109 research outputs found
Valence instability of cerium under pressure in the Kondo-like perovskite LaCeSrMnO
Effect of hydrostatic pressure and magnetic field on electrical resistance of
the Kondo-like perovskite manganese oxide,
LaCeSrMnO with a ferrimagnetic ground state, have
been investigated up to 2.1 GPa and 9 T. In this compound, the Mn-moments
undergo double exchange mediated ferromagnetic ordering at
280 K and there is a resistance maximum, at about 130 K which is
correlated with an antiferromagnetic ordering of {\it cerium} with respect to
the Mn-sublattice moments. Under pressure, the shifts to lower
temperature at a rate of d/d = -162 K/GPa and disappears at a
critical pressure 0.9 GPa. Further, the coefficient, of
term due to Kondo scattering decreases linearly with increase of
pressure showing an inflection point in the vicinity of . These
results suggest that {\it cerium} undergoes a transition from Ce state
to Ce/Ce mixed valence state under pressure. In contrast to
pressure effect, the applied magnetic field shifts to higher
temperature presumably due to enhanced ferromagnetic Mn moments.Comment: to be published in Phys. Rev. B (rapid commun
High Pressure X-Ray Diffraction Study of UMn2Ge2
Uranium manganese germanide, UMn2Ge2, crystallizes in body-centered
tetragonal ThCr2Si2 structure with space group I4/mmm, a = 3.993A and c =
10.809A under ambient conditions. Energy dispersive X-ray diffraction was used
to study the compression behaviour of UMn2Ge2 in a diamond anvil cell. The
sample was studied up to static pressure of 26 GPa and a reversible structural
phase transition was observed at a pressure of ~ 16.1 GPa. Unit cell parameters
were determined up to 12.4 GPa and the calculated cell volumes were found to be
well reproduced by a Murnaghan equation of state with K0 = 73.5 GPa and K' =
11.4. The structure of the high pressure phase above 16.0 GPa is quite
complicated with very broad lines and could not be unambiguously determined
with the available instrument resolution
Effects of Disorder in FeSe : An Ab Initio Study
Using the coherent-potential approximation, we have studied the effects of
excess Fe, Se-deficiency, and substitutions of S, Te on Se sub-lattice and Co,
Ni and Cu on Fe sub-lattice in FeSe. Our results show that (i) a small amount
of excess Fe substantially disorders the Fe-derived bands while Se-deficiency
affects mainly the Se-derived bands, (ii) the substitution of S or Te enhances
the possibility of Fermi surface nesting, specially in FeSeTe,
in spite of disordering the Se-derived bands, (iii) the electron doping through
Co, Ni or Cu disorders the system and pushes down the Fe-derived bands, thereby
destroying the possibility of Fermi surface nesting. A comparison of these
results with the rigid-band, virtual-crystal and supercell approximations
reveals the importance of describing disorder with the coherent-potential
approximation.Comment: Redone VCA calculations, and some minor changes. (Accepted for
publication in Journal of Physics:Condensed Matter
Enhanced Impurity Scattering due to Quantum Critical Fluctuations
It is shown on the basis of the lowest order perturbation expansion with
respect to critical fluctuations that the critical fluctuations give rise to an
enhancement of the potential scattering of non-magnetic impurities. This
qualitatively accounts for the enhancement of the resistivity due to impurities
which has been observed in variety of systems near the quantum critical point,
while the higher order processes happen to give much larger enhancement as seen
from the Ward identity arguments. The cases with dynamical critical exponent
=2 and =3 are discussed explicitly.Comment: Submitted to J. Phys. Soc. Jpn. on 27 September, 200
Thermodynamic and Transport Properties of CeMg2Cu9 under Pressure
We report the transport and thermodynamic properties under hydrostatic
pressure in the antiferromagnetic Kondo compound CeMg2Cu9 with a
two-dimensional arrangement of Ce atoms. Magnetic specific heat Cmag(T) shows a
Schottky-type anomaly around 30 K originating from the crystal electric field
(CEF) splitting of the 4f state with the first excited level at \Delta_{1}/kB =
58 K and the second excited level at \Delta_{2}/kB = 136 K from the ground
state.
Electric resistivity shows a two-peaks structure due to the Kondo effect on
each CEF level around T_{1}^{max} = 3 K and T_{2}^{max} = 40 K. These peaks
merge around 1.9 GPa with compression. With increasing pressure, Neel
temperature TN initially increases and then change to decrease. TN finally
disappears at the quantum critical point Pc = 2.4 GPa.Comment: 10 pages, 6 figure
Magnetic Field and Pressure Phase Diagrams of Uranium Heavy-Fermion Compound UZn
We have performed magnetization measurements at high magnetic fields of up to
53 T on single crystals of a uranium heavy-fermion compound UZn
grown by the Bridgman method. In the antiferromagnetic state below the N\'{e}el
temperature = 9.7 K, a metamagnetic transition is found at
32 T for the field along the [110] direction (-axis). The
magnetic phase diagram for the field along the [110] direction is
given. The magnetization curve shows a nonlinear increase at 35
T in the paramagnetic state above up to a characteristic
temperature where the magnetic susceptibility or
electrical resistivity shows a maximum value. This metamagnetic behavior of the
magnetization at is discussed in comparison with the metamagnetic
magnetism of the heavy-fermion superconductors UPt, URuSi, and
UPdAl. We have also carried out high-pressure resistivity measurement
on UZn using a diamond anvil cell up to 8.7 GPa. Noble gas argon was
used as a pressure-transmitting medium to ensure a good hydrostatic
environment. The N\'{e}el temperature is almost
pressure-independent up to 4.7 GPa and starts to increase in the
higher-pressure region. The pressure dependences of the coefficient of the
term in the electrical resistivity , the antiferromagnetic gap
, and the characteristic temperature are
discussed. It is found that the effect of pressure on the electronic states in
UZn is weak compared with those in the other heavy fermion
compounds
Interplay between magnetism and superconductivity and appearance of a second superconducting transition in alpha-FeSe at high pressure
We synthesized tetragonal alpha-FeSe by melting a powder mixture of iron and
selenium at high pressure. Subsequent annealing at normal pressure results in
removing traces of hexagonal beta- FeSe, formation of a rather sharp transition
to superconducting state at Tc ~ 7 K, and the appearance of a magnetic
transition near Tm = 120 K. Resistivity and ac-susceptibility were measured on
the annealed sample at hydrostatic pressure up to 4.5 GPa. A magnetic
transition visible in ac-susceptibility shifts down under pressure and the
resistive anomaly typical for a spin density wave (SDW) antiferromagnetic
transition develops near the susceptibility anomaly. Tc determined by the
appearance of a diamagnetic response in susceptibility, increases linearly
under pressure at a rate dTc/dP = 3.5 K/GPa. Below 1.5 GPa, the resistive
superconducting transition is sharp; the width of transition does not change
with pressure; and, Tc determined by a peak in drho/dT increases at a rate ~
3.5 K/GPa. At higher pressure, a giant broadening of the resistive transition
develops. This effect cannot be explained by possible pressure gradients in the
sample and is inherent to alpha-FeSe. The dependences drho(T)/dT show a
signature for a second peak above 3 GPa which is indicative of the appearance
of another superconducting state in alpha-FeSe at high pressure. We argue that
this second superconducting phase coexists with SDW antiferromagnetism in a
partial volume fraction and originates from pairing of charge carriers from
other sheets of the Fermi surface
Upper critical field, lower critical field and critical current density of FeTe0.60Se0.40 single crystal
The transport and magnetic studies are performed on high quality
FeTe0.60Se0.40 single crystals to determine the upper critical fields (Hc2),
lower critical field (Hc1) and the Critical current density (Jc). The value of
upper critical field Hc2 are very large, whereas the activation energy as
determined from the slope of the Arrhenius plots are was found to be lower than
that in the FeAs122 superconductor. The lower critical field was determined in
ab direction and c direction of the crystal, and was found to have a anisotropy
of 'gamma'{=(Hc1//c) / (Hc1//b)} ~ 4. The magnetic isotherms measured up to 12
Tesla shows the presence of fishtail behavior. The critical current densities
at 1.8K of the single crystal was found to almost same in both ab and c
direction as 1X105 Amp/cm2 in low field regime.Comment: 9 pages, 6 figure
High temperature superconductivity (Tc onset at 34K) in the high pressure orthorhombic phase of FeSe
We have studied the structural and superconducting properties of tetragonal
FeSe under pressures up to 26GPa using synchrotron radiation and diamond anvil
cells. The bulk modulus of the tetragonal phase is 28.5(3)GPa, much smaller
than the rest of Fe based superconductors. At 12GPa we observe a phase
transition from the tetragonal to an orthorhombic symmetry. The high pressure
orthorhombic phase has a higher Tc reaching 34K at 22GPa.Comment: 15 pages, 4 figure
- …