1,074 research outputs found

    The Exclusionary Rule: An Alternative Perspective

    Get PDF

    Accretion and activity on the post-common-envelope binary RR~Cae

    Full text link
    Current scenarios for the evolution of interacting close binaries - such as cataclysmic variables (CVs) - rely mainly on our understanding of low-mass star angular momentum loss (AML) mechanisms. The coupling of stellar wind with its magnetic field, i.e., magnetic braking, is the most promising mechanism to drive AML in these stars. There are basically two properties driving magnetic braking: the stellar magnetic field and the stellar wind. Understanding the mechanisms that drive AML therefore requires a comprehensive understanding of these two properties. RRCae is a well-known nearby (d=20pc) eclipsing DA+M binary with an orbital period of P=7.29h. The system harbors a metal-rich cool white dwarf (WD) and a highly active M-dwarf locked in synchronous rotation. The metallicity of the WD suggests that wind accretion is taking place, which provides a good opportunity to obtain the mass-loss rate of the M-dwarf component. We analyzed multi-epoch time-resolved high-resolution spectra of RRCae in search for traces of magnetic activity and accretion. We selected a number of well-known activity indicators and studied their short and long-term behavior. Indirect-imaging tomographic techniques were also applied to provide the surface brightness distribution of the magnetically active M-dwarf, and reveals a polar feature similar to those observed in fast-rotating solar-type stars. The blue part of the spectrum was modeled using a atmosphere model to constrain the WD properties and its metal enrichment. The latter was used to improve the determination of the mass-accretion rate from the M-dwarf wind. The presence of metals in the WD spectrum suggests that this component arises from accretion of the M-dwarf wind. A model fit to the WD gives Teff=(7260+/-250)K and logg=(7.8+/-0.1) dex with a metallicity of =(-2.8+/-0.1)dex, and a mass-accretion rate of dotMacc=(7+/-2)x1e-16Msun/yr.Comment: 14 pages, 7 Figures, 6 Table

    Orbit-resolved photometry and echelle spectroscopy of the cataclysmic variable ST LMi during a 2007 high state

    Get PDF
    We present high-resolution echelle spectra and contemporaneous photometry of the polar ST LMi during a high state in 2007 March. Emission lines at Hα, He I λ5876, and He I λ7065 show similar line profiles over orbital phase and have narrow and broad components. These profile changes with phase are very similar to those reported in earlier high-state studies of ST LMi. The radial velocity curves from double Gaussian fits to the line profiles are interpreted as two crossing curves, neither of which is coincident with the orbital motion of the secondary star. We attribute one component to infall motions near the white dwarf and the other to a gas streaming along magnetic field lines connecting the two stars

    Recent atmospheric neutrino results from Soudan 2

    Get PDF
    An updated measurement of the atmospheric nu_mu/nu_e ratio-of-ratios, 0.68+-0.11+-0.06, has been obtained using a 4.6-kty exposure of the Soudan-2 iron tracking calorimeter. The L/E distributions have been analyzed for effects of nu_mu -> nu_x oscillations, and an allowed region in the Delta m^2 vs. sin^2 2 theta plane has been determined.Comment: 3 pages, 4 figures; presented at TAUP99, the 6th Int. Workshop on Topics in Astroparticle and Underground Physics, Sept. 6-10, 1999, College de France, Paris, Franc

    VV Pup in a low state: secondary-star irradiation or stellar activity?

    Full text link
    Aims. Emission lines in polars show complex profiles with multiple components that are typically ascribed to the accretion stream, threading region, accretion spot, and the irradiated secondary-star. In low-state polars the fractional contribution by the accretion stream, and the accretion spot is greatly reduced offering an opportunity to study the effect of the secondary-star irradiation or stellar activity. We observed VV Pup during an exceptional low-state to study and constrain the properties of the line-forming regions and to search for evidence of chromospheric activity and/or irradiation. Methods. We obtained phase-resolved optical spectra at the ESO VLT+FORS1 with the aim of analyzing the emission line profile and radial velocity as a function of the orbital period. We also tailored irradiated secondary-star models to compare the predicted and the observed emission lines and to establish the nature of the line-forming regions. Results. Our observations and data analysis, when combined with models of the irradiated secondary-star, show that, while the weak low ionization metal lines (FeI and MgI) may be consistent with irradiation processes, the dominant Balmer H emission lines, as well as NaI and HeI, cannot be reproduced by the irradiated secondary-star models. We favor the secondary-star chromospheric activity as the main forming region and cause of the observed H, NaI, and He emission lines, though a threading region very close to the L1 point cannot be excluded.Comment: 10 pages, 9 figures, in press on A&

    "Dark Matter" in Accretion Disks

    Get PDF
    Using Spitzer Space Telescope photometric observations of the eclipsing, interacting binary WZ Sge, we have discovered that the accretion disk is far more complex than previously believed. Our 4.5 and 8 micron time series observations reveal that the well known gaseous accretion disk is surrounded by an asymmetric disk of dusty material with a radius approximately 15 times larger than the gaseous disk. This dust ring contains only a small amount of mass and is completely invisible at optical and near-IR wavelengths, hence consisting of "dark matter". We have produced a model dust ring using 1 micron spherical particles with a density of 3 g/cm3^3 and with a temperature profile ranging from 700-1500K. Our discovery about the accretion disk structure and the presence of a larger, outer dust ring have great relevance for accretion disks in general, including those in other interacting binary systems, pre-main sequence stars, and active galaxies.Comment: 34 pages, 8 figures (3 in color). Accepted to Ap

    p_T-fluctuations in high-energy p-p and A-A collisions

    Get PDF
    The event-by-event p_T-fluctuations in proton-proton and central Pb-Pb collisions, which have been experimentally studied by means of the so-called Phi-measure, are analyzed. The contribution due to the correlation which couples the average p_T to the event multiplicity is computed. The correlation appears to be far too weak to explain the preliminary experimental value of Phi (p_T) in p-p interactions. The significance of the result is discussed.Comment: 5 pages, 2 figures, minor improvement
    corecore