9 research outputs found

    Variation in the Structure of Bird Nests between Northern Manitoba and Southeastern Ontario

    Get PDF
    Traits that converge in appearance under similar environmental conditions among phylogenetically independent lineages are thought to represent adaptations to local environments. We tested for convergence in nest morphology and composition of birds breeding in two ecologically different locations in Canada: Churchill in northern Manitoba and Elgin in southeastern Ontario. We examined nests from four families of passerine birds (Turdidae: Turdus, Parulidae: Dendroica, Emberizidae: Passerculus and Fringillidae: Carduelis) where closely related populations or species breed in both locations. Nests of American Robins, Yellow Warblers, and Carduelis finches had heavier nest masses, and tended to have thicker nest-walls, in northern Manitoba compared with conspecifics or congenerics breeding in southeastern Ontario. Together, all species showed evidence for wider internal and external nest-cup diameters in northern Manitoba, while individual species showed varying patterns for internal nest-cup and external nest depths. American Robins, Yellow Warblers, and Carduelis finches in northern Manitoba achieved heavier nest masses in different ways. American Robins increased all materials in similar proportions, and Yellow Warblers and Common Redpolls used greater amounts of select materials. While changes in nest composition vary uniquely for each species, the pattern of larger nests in northern Manitoba compared to southeastern Ontario in three of our four phylogenetically-independent comparisons suggests that birds are adapting to similar selective pressures between locations

    Summer day-roost selection by eastern red bats varies between areas with different land-use histories

    No full text
    © 2020 Monarchino et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The eastern red bat (Lasiurus borealis) is widely considered to be in decline, inspiring interest in identifying important habitats for conservation in the eastern United States. Unfortunately, knowledge of important day-roosting habitats is lacking for much of the species’ range. We examined patterns of day-roost selection by male and female eastern red bats at two study sites in southeastern Ohio, U. S. A, to help fill this information gap. We radio-tagged 28 male and 25 female bats during the summers of 2016–2019 and located 53 male and 74 female roosts. Day-roost selection differed between sexes and study areas. In a mostly even-aged forest with significant historical disturbance, we found males and females roosting in trees located at higher elevations, with no clear selection based on tree or stand characteristics. Specifically, males selected trees with larger diameters located at lower, cooler elevations than females, which selected smaller diameter trees found at higher, warmer elevations. However, in a forest with less historical disturbance and more structural diversity, we found sexes differed in how they selected from available habitats. These data show that heterogeneity in environmental conditions can lead to different patterns in selection, even between sites located within a small geographic area. They also show that eastern red bats sexually segregate on the local landscape in the presence of diverse forest conditions but may not do so in the absence of such diversity. We recommend managing forests to maintain structural diversity across an elevational gradient to provide male and female eastern red bats with suitable day-roosting habitat in southeast Ohio
    corecore