590 research outputs found
An altered spatiotemporal gait adjustment during a virtual obstacle crossing task in patients with diabetic peripheral neuropathy
This study investigates spatiotemporal gait adjustments that occur while stepping over virtual obstacles during treadmill walking in people with/without diabetic peripheral neuropathy (DPN). Eleven adults with Type 2 diabetes mellitus, ten DPN, and 11 age-matched healthy adults (HTY) participated in this study. They stepped over forthcoming virtual obstacles during treadmill walking. Outcomes such as success rate, spatiotemporal gait characteristics during obstacle crossing, and correlations between these variables were evaluated. The results partially supported our hypotheses that when comparing with HTY and DM, people with DPN adopted a crossing strategy which decreased obstacle crossing success rate and maximal toe elevation, and increased stride time and stance time during virtual obstacle crossing. This might be due to the compromised somatosensory functions of their lower extremity which may increase the risk of falling. This study also found an inter-leg relationship which may be applied to future stepping or obstacle crossing training that incorporates both legs as a means for improving outcomes of the trailing leg during daily obstacle negotiation
Identification and disruption of bacteria associated with sheep scab mites - novel means of control?
Cascades with Adjoint Matter: Adjoint Transitions
A large class of duality cascades based on quivers arising from non-isolated
singularities enjoy adjoint transitions - a phenomenon which occurs when the
gauge coupling of a node possessing adjoint matter is driven to strong coupling
in a manner resulting in a reduction of rank in the non-Abelian part of the
gauge group and a subsequent flow to weaker coupling. We describe adjoint
transitions in a simple family of cascades based on a Z2-orbifold of the
conifold using field theory. We show that they are dual to Higgsing and produce
varying numbers of U(1) factors, moduli, and monopoles in a manner which we
calculate. This realizes a large family of cascades which proceed through
Seiberg duality and Higgsing. We briefly describe the supergravity limit of our
analysis, as well as a prescription for treating more general theories. A
special role is played by N=2 SQCD. Our results suggest that additional light
fields are typically generated when UV completing certain constructions of
spontaneous supersymmetry breaking into cascades, potentially leading to
instabilities.Comment: 29 pages, a few typos fixed, improved discussion, added figure; now
there is 1 figur
Superconformal Flavor Simplified
A simple explanation of the flavor hierarchies can arise if matter fields
interact with a conformal sector and different generations have different
anomalous dimensions under the CFT. However, in the original study by Nelson
and Strassler many supersymmetric models of this type were considered to be
'incalculable' because the R-charges were not sufficiently constrained by the
superpotential. We point out that nearly all such models are calculable with
the use of a-maximization. Utilizing this, we construct the simplest
vector-like flavor models and discuss their viability. A significant constraint
on these models comes from requiring that the visible gauge couplings remain
perturbative throughout the conformal window needed to generate the
hierarchies. However, we find that there is a small class of simple flavor
models that can evade this bound.Comment: 43 pages, 1 figure; V3: small corrections and clarifications,
references adde
Impairing autophagy in retinal pigment epithelium leads to inflammasome activation and enhanced macrophage-mediated angiogenesis
Age-related decreases in autophagy contribute to the progression of age-related macular degeneration (AMD). We have now studied the interaction between autophagy impaired in retinal pigment epithelium (RPE) and the responses of macrophages. We find that dying RPE cells can activate the macrophage inflammasome and promote angiogenesis. In vitro, inhibiting rotenone-induced autophagy in RPE cells elicits caspase-3 mediated cell death. Co-culture of damaged RPE with macrophages leads to the secretion of IL-1β, IL-6 and nitrite oxide. Exogenous IL-6 protects the dysfunctional RPE but IL-1β causes enhanced cell death. Furthermore, IL-1β toxicity is more pronounced in dysfunctional RPE cells showing reduced IRAK3 gene expression. Co-culture of macrophages with damaged RPE also elicits elevated levels of pro-angiogenic proteins that promote ex vivo choroidal vessel sprouting. In vivo, impaired autophagy in the eye promotes photoreceptor and RPE degeneration and recruitment of inflammasome-activated macrophages. The degenerative tissue environment drives an enhanced pro-angiogenic response, demonstrated by increased size of laser-induced choroidal neovascularization (CNV) lesions. The contribution of macrophages was confirmed by depletion of CCR2 + monocytes, which attenuates CNV in the presence of RPE degeneration. Our results suggest that the interplay between perturbed RPE homeostasis and activated macrophages influences key features of AMD development
Identifying chemokines as therapeutic targets in renal disease: Lessons from antagonist studies and knockout mice
Chemokines, in concert with cytokines and adhesion molecules, play multiple roles in local and systemic immune responses. In the kidney, the temporal and spatial expression of chemokines correlates with local renal damage and accumulation of chemokine receptor-bearing leukocytes. Chemokines play important roles in leukocyte trafficking and blocking chemokines can effectively reduce renal leukocyte recruitment and subsequent renal damage. However, recent data indicate that blocking chemokine or chemokine receptor activity in renal disease may also exacerbate renal inflammation under certain conditions. An increasing amount of data indicates additional roles of chemokines in the regulation of innate and adaptive immune responses, which may adversively affect the outcome of interventional studies. This review summarizes available in vivo studies on the blockade of chemokines and chemokine receptors in kidney diseases, with a special focus on the therapeutic potential of anti-chemokine strategies, including potential side effects, in renal disease. Copyright (C) 2004 S. Karger AG, Basel
Bounds on 4D Conformal and Superconformal Field Theories
We derive general bounds on operator dimensions, central charges, and OPE
coefficients in 4D conformal and N=1 superconformal field theories. In any CFT
containing a scalar primary phi of dimension d we show that crossing symmetry
of implies a completely general lower bound on the central
charge c >= f_c(d). Similarly, in CFTs containing a complex scalar charged
under global symmetries, we bound a combination of symmetry current two-point
function coefficients tau^{IJ} and flavor charges. We extend these bounds to
N=1 superconformal theories by deriving the superconformal block expansions for
four-point functions of a chiral superfield Phi and its conjugate. In this case
we derive bounds on the OPE coefficients of scalar operators appearing in the
Phi x Phi* OPE, and show that there is an upper bound on the dimension of Phi*
Phi when dim(Phi) is close to 1. We also present even more stringent bounds on
c and tau^{IJ}. In supersymmetric gauge theories believed to flow to
superconformal fixed points one can use anomaly matching to explicitly check
whether these bounds are satisfied.Comment: 47 pages, 9 figures; V2: small corrections and clarification
Whole-Blood Flow-Cytometric Analysis of Antigen-Specific CD4 T-Cell Cytokine Profiles Distinguishes Active Tuberculosis from Non-Active States
T-cell based IFN-γ release assays do not permit distinction of active tuberculosis (TB) from successfully treated disease or latent M. tuberculosis infection. We postulated that IFN-γ and IL-2 cytokine profiles of antigen-specific T cells measured by flow-cytometry ex vivo might correlate with TB disease activity in vivo. Tuberculin (PPD), ESAT-6 and CFP-10 were used as stimuli to determine antigen-specific cytokine profiles in CD4 T cells from 24 patients with active TB and 28 patients with successfully treated TB using flow-cytometry. Moreover, 25 individuals with immunity consistent with latent M. tuberculosis infection and BCG-vaccination, respectively, were recruited. Although the frequency of cytokine secreting PPD reactive CD4 T cells was higher in patients with active TB compared to patients with treated TB (median 0.81% vs. 0.39% of CD4 T cells, p = 0.02), the overlap in frequencies precluded distinction between the groups on an individual basis. When assessing cytokine profiles, PPD specific CD4 T cells secreting both IFN-γ and IL-2 predominated in treated TB, latent infection and BCG-vaccination, whilst in active TB the cytokine profile was shifted towards cells secreting IFN-γ only (p<0.0001). Cytokine profiles of ESAT-6 or CFP-10 reactive CD4 T cells did not differ between the groups. Receiver operator characteristics (ROC) analysis revealed that frequencies of PPD specific IFN-γ/IL-2 dual-positive T cells below 56% were an accurate marker for active TB (specificity 100%, sensitivity 70%) enabling effective discrimination from non-active states. In conclusion, a frequency lower than 56% IFN-γ/IL-2 dual positive PPD-specific circulating CD4 T-cells is strongly indicative of active TB
Bounds on SCFTs from Conformal Perturbation Theory
The operator product expansion (OPE) in 4d (super)conformal field theory is
of broad interest, for both formal and phenomenological applications. In this
paper, we use conformal perturbation theory to study the OPE of nearly-free
fields coupled to SCFTs. Under fairly general assumptions, we show that the OPE
of a chiral operator of dimension with its complex
conjugate always contains an operator of dimension less than . Our
bounds apply to Banks-Zaks fixed points and their generalizations, as we
illustrate using several examples.Comment: 36 pages; v2: typos fixed, minor change
- …