635 research outputs found
Metastable Vacua in Superconformal SQCD-like Theories
We study dynamical supersymmetry breaking in vector-like superconformal N=1
gauge theories. We find appropriate deformations of the superpotential to
overcome the problem of the instability of the non supersymmetric vacuum. The
request for long lifetime translates into constraints on the physical couplings
which in this regime can be controlled through efficient RG analysis.Comment: 17 pages, 7 figures, JHEP3.cl
Soft Spectrum in Yukawa-Gauge Mediation
We introduce a model independent parametrization for a subclass of gauge
mediated theories, which we refer to as Yukawa-gauge mediation. Within this
formalism we study the resulting soft masses in the visible spectrum. We find
general expressions for the gaugino and scalar masses. Under generic
conditions, the gaugino mass is screened, vanishing at first order in the SUSY
breaking scale.Comment: 22 pages, 4 figures; v2: minor corrections, published versio
Superconformal Flavor Simplified
A simple explanation of the flavor hierarchies can arise if matter fields
interact with a conformal sector and different generations have different
anomalous dimensions under the CFT. However, in the original study by Nelson
and Strassler many supersymmetric models of this type were considered to be
'incalculable' because the R-charges were not sufficiently constrained by the
superpotential. We point out that nearly all such models are calculable with
the use of a-maximization. Utilizing this, we construct the simplest
vector-like flavor models and discuss their viability. A significant constraint
on these models comes from requiring that the visible gauge couplings remain
perturbative throughout the conformal window needed to generate the
hierarchies. However, we find that there is a small class of simple flavor
models that can evade this bound.Comment: 43 pages, 1 figure; V3: small corrections and clarifications,
references adde
General Gauge Mediation with Gauge Messengers
We generalize the General Gauge Mediation formalism to allow for the
possibility of gauge messengers. Gauge messengers occur when charged matter
fields of the susy-breaking sector have non-zero F-terms, which leads to
tree-level, susy-breaking mass splittings in the gauge fields. A classic
example is that SU(5) / SU(3) x SU(2) x U(1) gauge fields could be gauge
messengers. We give a completely general, model independent, current-algebra
based analysis of gauge messenger mediation of susy-breaking to the visible
sector. Characteristic aspects of gauge messengers include enhanced
contributions to gaugino masses, (tachyonic) sfermion mass-squareds generated
already at one loop, and also at two loops, and significant one-loop A-terms,
already at the messenger scale.Comment: 79 pages, 5 figure
Supersymmetry Breaking in Chern-Simons-matter Theories
Some of supersymmetric Chern-Simons theories are known to exhibit
supersymmetry breaking when the Chern-Simons level is less than a certain
number. The mechanism of the supersymmetry breaking is, however, not clear from
the field theory viewpoint. In this paper, we discuss vacuum states of pure Chern-Simons theory and Chern-Simons-matter theories of
quiver type using related theories in which Chern-Simons terms are replaced
with (anti-)fundamental chiral multiplets. In the latter theories,
supersymmetry breaking can be shown to occur by examining that the vacuum
energy is non-zero.Comment: 17 pages, 3 figures, v2) references adde
Assessing a candidate IIA dual to metastable supersymmetry-breaking
We analyze the space of linearized non-supersymmetric deformations around a
IIA solution found by Cvetic, Gibbons, Lu and Pope (CGLP) in hep-th/0101096. We
impose boundary conditions aimed at singling out among those perturbations
those describing the backreaction of anti-D2 branes on the CGLP background. The
corresponding supergravity solution is a would-be dual to a metastable
supersymmetry-breaking state. However, it turns out that this candidate bulk
solution is inevitably riddled with IR divergences of its flux densities and
action, whose physical meaning and implications for models of string cosmology
call for further investigation.Comment: 33 pages. v2: reference added, clarifications in the introductio
Global Symmetries and D-Terms in Supersymmetric Field Theories
We study the role of D-terms in supersymmetry (SUSY) breaking. By carefully
analyzing the SUSY multiplets containing various conserved currents in theories
with global symmetries, we obtain a number of constraints on the
renormalization group flow in supersymmetric field theories. Under broad
assumptions, these results imply that there are no SUSY-breaking vacua, not
even metastable ones, with parametrically large D-terms. This explains the
absence of such D-terms in models of dynamical SUSY-breaking. There is,
however, a rich class of calculable models which generate comparable D-terms
and F-terms through a variety of non-perturbative effects; these D-terms can be
non-abelian. We give several explicit examples of such models, one of which is
a new calculable limit of the 3-2 model.Comment: 34 pages, 2 figures; reference added, minor change
Dynamical completions of generalized O'Raifeartaigh models
We present gauge theory completions of Wess-Zumino models admitting
supersymmetry breaking vacua with spontaneously broken R-symmetry. Our models
are simple deformations of generalized ITIY models, a supersymmetric theory
with gauge group Sp(N), N+1 flavors plus singlets, with a modified tree level
superpotential which explicitly breaks (part of) the global symmetry. Depending
on the nature of the deformation, we obtain effective O'Raifeartaigh-like
models whose pseudomoduli space is locally stable in a neighborhood of the
origin of field space, or in a region not including it. Hence, once embedded in
direct gauge mediation scenarios, our models can give low energy spectra with
either suppressed or unsuppressed gaugino mass.Comment: 21 pages, 1 figure; v3: reference adde
Non Supersymmetric Metastable Vacua in N=2 SYM Softly Broken to N=1
We find non-supersymmetric metastable vacua in four dimensional N=2 gauge
theories softly broken to N=1 by a superpotential term. First we study the
simplest case, namely the SU(2) gauge theory without flavors. We study the
spectrum and lifetime of the metastable vacuum and possible embeddings of the
model in UV complete theories. Then we consider larger gauge group theories
with flavors. We show that when we softly break them to N=1, the potential
induced on specific submanifolds of their moduli space is identical to the
potential in lower rank gauge theories. Then we show that the potential
increases when we move away from this submanifold, allowing us to construct
metastable vacua on them in the theories that can be reduced to the SU(2) case.Comment: 29 pages, 10 figure
Cascades with Adjoint Matter: Adjoint Transitions
A large class of duality cascades based on quivers arising from non-isolated
singularities enjoy adjoint transitions - a phenomenon which occurs when the
gauge coupling of a node possessing adjoint matter is driven to strong coupling
in a manner resulting in a reduction of rank in the non-Abelian part of the
gauge group and a subsequent flow to weaker coupling. We describe adjoint
transitions in a simple family of cascades based on a Z2-orbifold of the
conifold using field theory. We show that they are dual to Higgsing and produce
varying numbers of U(1) factors, moduli, and monopoles in a manner which we
calculate. This realizes a large family of cascades which proceed through
Seiberg duality and Higgsing. We briefly describe the supergravity limit of our
analysis, as well as a prescription for treating more general theories. A
special role is played by N=2 SQCD. Our results suggest that additional light
fields are typically generated when UV completing certain constructions of
spontaneous supersymmetry breaking into cascades, potentially leading to
instabilities.Comment: 29 pages, a few typos fixed, improved discussion, added figure; now
there is 1 figur
- …
