728 research outputs found

    Scleroderma, Stress and CAM Utilization

    Get PDF
    Scleroderma is an autoimmune disease influenced by interplay among genetic and environmental factors, of which one is stress. Complementary and alternative medicine (CAM) is frequently used to treat stress and those diseases in which stress has been implicated. Results are presented from a survey of patients with scleroderma. Respondents were a convenient sample of those attending a national conference in Las Vegas in 2002. Findings implicate stress in the onset, continuation and exacerbation of scleroderma. The implication is that CAM providers may be filling an important patient need in their provision of services that identify and treat stress and its related disorders

    Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment.

    Get PDF
    Sequencing studies have implicated haploinsufficiency of ARID1B, a SWI/SNF chromatin-remodeling subunit, in short stature (Yu et al., 2015), autism spectrum disorder (O'Roak et al., 2012), intellectual disability (Deciphering Developmental Disorders Study, 2015), and corpus callosum agenesis (Halgren et al., 2012). In addition, ARID1B is the most common cause of Coffin-Siris syndrome, a developmental delay syndrome characterized by some of the above abnormalities (Santen et al., 2012; Tsurusaki et al., 2012; Wieczorek et al., 2013). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified Insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth hormone-releasing hormone (GHRH) and Growth hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling

    Mycobacterium abscessus Glycopeptidolipid Prevents Respiratory Epithelial TLR2 Signaling as Measured by HβD2 Gene Expression and IL-8 Release

    Get PDF
    Mycobacterium abscessus has emerged as an important cause of lung infection, particularly in patients with bronchiectasis. Innate immune responses must be highly effective at preventing infection with M. abscessus because it is a ubiquitous environmental saprophyte and normal hosts are not commonly infected. M. abscessus exists as either a glycopeptidolipid (GPL) expressing variant (smooth phenotype) in which GPL masks underlying bioactive cell wall lipids, or as a variant lacking GPL which is immunostimulatory and invasive in macrophage infection models. Respiratory epithelium has been increasingly recognized as playing an important role in the innate immune response to pulmonary pathogens. Respiratory epithelial cells express toll-like receptors (TLRs) which mediate the innate immune response to pulmonary pathogens. Both interleukin-8 (IL-8) and human β-defensin 2 (HβD2) are expressed by respiratory epithelial cells in response to toll-like receptor 2 (TLR2) receptor stimulation. In this study, we demonstrate that respiratory epithelial cells respond to M. abscessus variants lacking GPL with expression of IL-8 and HβD2. Furthermore, we demonstrate that this interaction is mediated through TLR2. Conversely, M. abscessus expressing GPL does not stimulate expression of IL-8 or HβD2 by respiratory epithelial cells which is consistent with “masking” of underlying bioactive cell wall lipids by GPL. Because GPL-expressing smooth variants are the predominant phenotype existing in the environment, this provides an explanation whereby initial M. abscessus colonization of abnormal lung airways escapes detection by the innate immune system

    Proteomic Identification of S-Nitrosylated Golgi Proteins: New Insights into Endothelial Cell Regulation by eNOS-Derived NO

    Get PDF
    <div><h3>Background</h3><p>Endothelial nitric oxide synthase (eNOS) is primarily localized on the Golgi apparatus and plasma membrane caveolae in endothelial cells. Previously, we demonstrated that protein S-nitrosylation occurs preferentially where eNOS is localized. Thus, in endothelial cells, Golgi proteins are likely to be targets for S-nitrosylation. The aim of this study was to identify S-nitrosylated Golgi proteins and attribute their S-nitrosylation to eNOS-derived nitric oxide in endothelial cells.</p> <h3>Methods</h3><p>Golgi membranes were isolated from rat livers. S-nitrosylated Golgi proteins were determined by a modified biotin-switch assay coupled with mass spectrometry that allows the identification of the S-nitrosylated cysteine residue. The biotin switch assay followed by Western blot or immunoprecipitation using an S-nitrosocysteine antibody was also employed to validate S-nitrosylated proteins in endothelial cell lysates.</p> <h3>Results</h3><p>Seventy-eight potential S-nitrosylated proteins and their target cysteine residues for S-nitrosylation were identified; 9 of them were Golgi-resident or Golgi/endoplasmic reticulum (ER)-associated proteins. Among these 9 proteins, S-nitrosylation of EMMPRIN and Golgi phosphoprotein 3 (GOLPH3) was verified in endothelial cells. Furthermore, S-nitrosylation of these proteins was found at the basal levels and increased in response to eNOS stimulation by the calcium ionophore A23187. Immunofluorescence microscopy and immunoprecipitation showed that EMMPRIN and GOLPH3 are co-localized with eNOS at the Golgi apparatus in endothelial cells. S-nitrosylation of EMMPRIN was notably increased in the aorta of cirrhotic rats.</p> <h3>Conclusion</h3><p>Our data suggest that the selective S-nitrosylation of EMMPRIN and GOLPH3 at the Golgi apparatus in endothelial cells results from the physical proximity to eNOS-derived nitric oxide.</p> </div

    Complex nature of SNP genotype effects on gene expression in primary human leucocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown.</p> <p>Methods</p> <p>We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110) from individuals with celiac disease – a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90), and performed a meta-analysis to increase power to detect non-tissue specific effects.</p> <p>Results</p> <p>In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (< 250 kb from SNP, at FDR = 0.05, <it>cis </it>expression quantitative trait loci, eQTLs). 135 of the detected SNP-probe effects (reflecting 51 unique probes) were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed <it>cis</it>-eQTLs. Celiac associated risk variants from two regions, containing genes <it>IL18RAP </it>and <it>CCR3</it>, showed significant <it>cis </it>genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected.</p> <p>Conclusion</p> <p>In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.</p

    A wager on the future: a practicable response to HIV pre-exposure prophylaxis (PrEP) and the stubborn fact of process

    Get PDF
    In this article we focus on public health’s wager on the social implications of a daily antiretroviral pill to prevent HIV, referred to as PrEP (pre-exposure prophylaxis). The wager is shown to rely on modes of inquiry overly tied to what is known of the present in order to predict the future. Although such inquiry is not unusual when social research is called upon to assist health policy, predictive methodologies are unable to appreciate the dynamic and thus indeterminate nature of process. We ask: what mode of inquiry might practicably appreciate that what happens in the present will have a bearing on the future, without foreclosing on unknown possibles? Drawing on speculative and pragmatic philosophy, we reflect on our own qualitative research on PrEP to suggest that conventional methodological approaches can contribute to the future without seeking to determine what it will become

    Erufosine, a novel alkylphosphocholine, in acute myeloid leukemia: single activity and combination with other antileukemic drugs

    Get PDF
    Alkylphosphocholines represent a new class of cytostatic drugs with a novel mode of action. Erufosine (ErPC3), the first compound of this class that can be administered intravenously, has recently been shown to be active against human tumor and leukemic cell lines. METHODS: In order to evaluate the antileukemic potential of ErPC3 in acute myeloid leukemia (AML) the lethal concentration 50% (LC 50) was determined using WST-1 assay. For analysis of cell death, staining for Annexin V and activated caspase 3 was performed. An interaction analysis was performed by calculation of combination index and construction of isobolograms. RESULTS: The LC 50 was 7.4 microg/ml after 24 h and 3.2 microg/ml after 72 h in HL 60 cells and 30.1 and 8.6 microg/ml, respectively, in 19 fresh samples from patients with AML. ErPC3 was found to be cytotoxic in HL60 cells with distinct activation of caspase 3. ErPC3 was not cross-resistant with cytarabine, idarubicine and etoposide as shown by the linear relation of respective LC 50s. The latter agents, however, exerted an additive cytotoxicity in combination with ErPC3 as revealed by isobologram analysis and combination index, although results are uneven for idarubicine. CONCLUSION: Based on these data ErPC3 appears as a novel antileukemic candidate drug, which needs to be explored further in the treatment of AML

    Evaluation of a Novel Biphasic Culture Medium for Recovery of Mycobacteria: A Multi-Center Study

    Get PDF
    on L-J slants. Automated liquid culture systems are expensive. A low-cost culturing medium capable of rapidly indicating the presence of mycobacteria is needed. The aim of this study was to develop and evaluate a novel biphasic culture medium for the recovery of mycobacteria from clinical sputum specimens from suspected pulmonary tuberculosis patients.<0.001).
    corecore