36 research outputs found

    Targeted antitumour therapy – future perspectives

    Get PDF
    The advent of targeted therapy presents an unprecedented opportunity for advances in the treatment of cancer. A key challenge will be to translate the undoubted promise of targeted agents into tangible clinical benefits. Achieving this goal is likely to be dependent upon a number of factors. These include continued research to improve our understanding of the heterogeneity and complexity of the tumour microenvironment; refinement of clinical trial design to incorporate nontraditional end points such as the optimum biological dose and health-related quality of life; and the use of technological advancements in proteomics, genomics and biomarker development to better predict tumour types and patient subsets that may be particularly responsive to treatment, as well as enable a more accurate assessment of drug effect at the molecular level. In summary, the future success of targeted agents will require an integrated multidisciplinary approach involving all stakeholders

    A somatosensory circuit for cooling perception in mice

    No full text
    The temperature of an object provides important somatosensory information for animals performing tactile tasks. Humans can perceive skin cooling of less than one degree, but the sensory afferents and central circuits that they engage to enable the perception of surface temperature are poorly understood. To address these questions, we examined the perception of glabrous skin cooling in mice. We found that mice were also capable of perceiving small amplitude skin cooling and that primary somatosensory (S1) cortical neurons were required for cooling perception. Moreover, the absence of the menthol-gated transient receptor potential melastatin 8 ion channel in sensory afferent fibers eliminated the ability to perceive cold and the corresponding activation of S1 neurons. Our results identify parts of a neural circuit underlying cold perception in mice and provide a new model system for the analysis of thermal processing and perception and multimodal integration
    corecore