112 research outputs found

    The microbiome of pest insects:It is not just bacteria

    Get PDF
    Insects are associated with multiple microbes that have been reported to influence various aspects of their biology. Most studies in insects, including pest species, focus on the bacterial communities of the microbiome even though the microbiome consists of members of many more kingdoms, which can also have large influence on the life history of insects. In this review, we present some key examples of how the different members of the microbiome, such as bacteria, fungi, viruses, archaea, and protozoa, affect the fitness and behavior of pest insects. Moreover, we argue that interactions within and among microbial groups are abundant and of great importance, necessitating the use of a community approach to study microbial-host interactions. We propose that the restricted focus on bacteria very likely hampers our understanding of the functioning and impact of the microbiome on the biology of pest insects. We close our review by highlighting a few open questions that can provide an in-depth understanding of how other components of the microbiome, in addition to bacteria, might influence host performance, thus contributing to pest insect ecology

    Risk factors for pressure sores in adult patients with myelomeningocele – a questionnaire-based study

    Get PDF
    BACKGROUND: Myelomeningocele (MMC) is a part of a complex neural tube defect and a disorder of the cerebrospinal fluid system. Pressure sores are a frequent complication for patients with MMC. Little is known about the risk factors for pressure sores in adults with MMC. The aim of this study was to investigate an association between the presence of pressure sores and other patient characteristics, in order to develop an improved strategy for the management of sores. METHODS: A structured questionnaire regarding sores, medical condition, function and living factors was designed and sent to the 193 patients with MMC registered in the year 2003 at TRS, a National Centre for Rare Disorders in Norway. RESULTS: Out of 193 total, 87 patients participated and 71 patients (82%) reported sores; 26 (30%) at the time of the interview and 45 (52%) during the last 5 years. Sores were mostly localized on toes and feet and occurred exclusively in regions with reduced or missing sensibility. A significant association was found between sores and memory deficit (p = 0.02), Arnold Chiari malformation (p = 0.02) and a record of previous sores (p = 0.004). Sores were not significantly associated with hydrocephalus, syringomyelia, nutrition, body mass index, smoking, physical activity, employment or living together with other persons. Some patients (18, 21%) reported skin inspection by others and the remainder relied on self-inspection. CONCLUSION: Patients with sensory deficit, memory problems, and Arnold Chiari malformation had a higher risk of having pressure sores. This patient group needs improved skin inspection routines and sore treatment

    Disturbance of Glucose Homeostasis After Pediatric Cardiac Surgery

    Get PDF
    This study aimed to evaluate the time course of perioperative blood glucose levels of children undergoing cardiac surgery for congenital heart disease in relation to endogenous stress hormones, inflammatory mediators, and exogenous factors such as caloric intake and glucocorticoid use. The study prospectively included 49 children undergoing cardiac surgery. Blood glucose levels, hormonal alterations, and inflammatory responses were investigated before and at the end of surgery, then 12 and 24 h afterward. In general, blood glucose levels were highest at the end of surgery. Hyperglycemia, defined as a glucose level higher than 8.3 mmol/l (>150 mg/dl) was present in 52% of the children at the end of surgery. Spontaneous normalization of blood glucose occurred in 94% of the children within 24 h. During surgery, glucocorticoids were administered to 65% of the children, and this was the main factor associated with hyperglycemia at the end of surgery (determined by univariate analysis of variance). Hyperglycemia disappeared spontaneously without insulin therapy after 12–24 h for the majority of the children. Postoperative morbidity was low in the study group, so the presumed positive effects of glucocorticoids seemed to outweigh the adverse effects of iatrogenic hyperglycemia

    Relative adrenal insufficiency and hemodynamic status in cardiopulmonary bypass surgery patients. A prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objectives of this study were to determine the risk factors for relative adrenal insufficiency in cardiopulmonary bypass patients and the impact on postoperative vasopressor requirements.</p> <p>Methods</p> <p>Prospective cohort study on cardiopulmonary bypass patients who received etomidate or not during anesthetic induction. Relative adrenal insufficiency was defined as a rise in serum cortisol ≤ 9 μg/dl after the administration of 250 μg of consyntropin. Plasma cortisol levels were measured preoperatively, immediately before, 30, 60, and 90 minutes after the administration of cosyntropin, and at 24 hours after surgery.</p> <p>Results</p> <p>120 elective cardiopulmonary bypass patients were included. Relative adrenal insufficiency (Δcortisol ≤9 μg/dl) incidence was 77.5%. 78 patients received etomidate and 69 (88%) of them developed relative adrenal insufficiency, (<it>P </it>< 0.001). Controlling for clinical characteristics with a propensity analysis, etomidate was the only independent risk factor associated with relative adrenal insufficiency (OR 6.55, CI 95%: 2.47-17.4; <it>P </it>< 0.001). Relative adrenal insufficiency patients showed more vasopressor requirements just after surgery (<it>P </it>= 0.04), and at 4 hours after surgery (<it>P </it>= 0.01). Pre and post-test plasma cortisol levels were inversely associated with maximum norepinephrine dose (ρ = -0.22, <it>P </it>= 0.02; ρ = -0.18, <it>P </it>= 0.05; ρ = -0.21, <it>P </it>= 0.02; and ρ = -0.22, <it>P </it>= 0.02, respectively).</p> <p>Conclusions</p> <p>Relative adrenal insufficiency in elective cardiopulmonary bypass patients may induce postoperative vasopressor dependency. Use of etomidate in these patients is a modifiable risk factor for the development of relative adrenal insufficiency that should be avoided.</p

    Molecular abnormalities in autopsied brain tissue from the inferior horn of the lateral ventricles of nonagenarians and Alzheimer disease patients

    Get PDF
    Background The ventricular system plays a vital role in blood-cerebrospinal fluid (CSF) exchange and interstitial fluid-CSF drainage pathways. CSF is formed in the specialized secretory tissue called the choroid plexus, which consists of epithelial cells, fenestrated capillaries and the highly vascularized stroma. Very little is currently known about the role played by the ventricles and the choroid plexus tissue in aging and Alzheimer's disease (AD). MethodsIn this study, we used our state-of-the-art proteomic platform, a liquid chromatography/mass spectrometry (LC-MS/MS) approach coupled with Tandem Mass Tag isobaric labeling to conduct a detailed unbiased proteomic analyses of autopsied tissue isolated from the walls of the inferior horn of the lateral ventricles in AD (77.2 ± 0.6 yrs), age-matched controls (77.0 ± 0.5 yrs), and nonagenarian cases (93.2 ± 1.1 yrs). ResultsIngenuity pathway analyses identified phagosome maturation, impaired tight-junction signaling, and glucose/mannose metabolism as top significantly regulated pathways in controls vs nonagenarians. In matched-control vs AD cases we identified alterations in mitochondrial bioenergetics, oxidative stress, remodeling of epithelia adherens junction, macrophage recruitment and phagocytosis, and cytoskeletal dynamics. Nonagenarian vs AD cases demonstrated augmentation of oxidative stress, changes in gluconeogenesis-glycolysis pathways, and cellular effects of choroidal smooth muscle cell vasodilation. Amyloid plaque score uniquely correlated with remodeling of epithelial adherens junctions, Fc γ-receptor mediated phagocytosis, and alterations in RhoA signaling. Braak staging was uniquely correlated with altered iron homeostasis, superoxide radical degradation and phagosome maturation. Conclusions These changes provide novel insights to explain the compromise to the physiological properties and function of the ventricles/choroid plexus system in nonagenarian aging and AD pathogenesis. The pathways identified could provide new targets for therapeutic strategies to mitigate the divergent path towards AD

    Glucocorticoid receptor mRNA levels are selectively decreased in neutrophils of children with sepsis

    Get PDF
    Objective: Corticosteroids are used in sepsis treatment to benefit outcome. However, discussion remains on which patients will benefit from treatment. Inter-individual variations in cortisol sensitivity, mediated through the glucocorticoid receptor, might play a role in the observed differences. Our aim was to study changes in mRNA levels of three glucocorticoid receptor splice variants in neutrophils of children with sepsis. Patients and design: Twenty-three children admitted to the pediatric intensive care unit with sepsis or septic shock were included. Neutrophils were isolated at days 0, 3 and 7, and after recovery (>3 months). mRNA levels of the glucocorticoid receptor splice variants GR-α (determining most of the cortisol effect), GR-P (increasing GR-α effect) and GR-β (inhibitor of GR-α) were measured quantitatively. Main results: Neutrophils from sepsis patients showed decreased levels of glucocorticoid receptor mRNA of the GR-α and GR-P splice variants on day 0 compared to after recovery. GR-α and GR-P mRNA levels showed a gradual recovery on days 3 and 7 and normalized after recovery. GR-β mRNA levels did not change significantly during sepsis. GR expression was negatively correlated to interleukin-6 (a measure of disease severity, r = -0.60, P = 0.009). Conclusions: Children with sepsis or septic shock showed a transient depression of glucocorticoid receptor mRNA in their neutrophils. This feature may represent a tissue-specific adaptation during sepsis leading to increased cortisol resistance of neutrophils. Our study adds to understanding the mechanism of cortisol sensitivity in immune cells. Future treatment strategies, aiming at timing and tissue specific regulation of glucocorticoids, might benefit patients with sepsis or septic shock

    Pneumocystis murina colonization in immunocompetent surfactant protein A deficient mice following environmental exposure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pneumocystis spp</it>. are opportunistic pathogens that cause pneumonia in immunocompromised humans and animals. <it>Pneumocystis </it>colonization has also been detected in immunocompetent hosts and may exacerbate other pulmonary diseases. Surfactant protein A (SP-A) is an innate host defense molecule and plays a role in the host response to <it>Pneumocystis</it>.</p> <p>Methods</p> <p>To analyze the role of SP-A in protecting the immunocompetent host from <it>Pneumocystis </it>colonization, the susceptibility of immunocompetent mice deficient in SP-A (KO) and wild-type (WT) mice to <it>P. murina </it>colonization was analyzed by reverse-transcriptase quantitative PCR (qPCR) and serum antibodies were measured by enzyme-linked immunosorbent assay (ELISA).</p> <p>Results</p> <p>Detection of <it>P. murina </it>specific serum antibodies in immunocompetent WT and KO mice indicated that the both strains of mice had been exposed to <it>P. murina </it>within the animal facility. However, P. <it>murina </it>mRNA was only detected by qPCR in the lungs of the KO mice. The incidence and level of the mRNA expression peaked at 8–10 weeks and declined to undetectable levels by 16–18 weeks. When the mice were immunosuppressed, <it>P. murina </it>cyst forms were also only detected in KO mice. <it>P. murina </it>mRNA was detected in <it>SCID </it>mice that had been exposed to KO mice, demonstrating that the immunocompetent KO mice are capable of transmitting the infection to immunodeficient mice. The pulmonary cellular response appeared to be responsible for the clearance of the colonization. More CD4+ and CD8+ T-cells were recovered from the lungs of immunocompetent KO mice than from WT mice, and the colonization in KO mice depleted CD4+ cells was not cleared.</p> <p>Conclusion</p> <p>These data support an important role for SP-A in protecting the immunocompetent host from <it>P. murina </it>colonization, and provide a model to study <it>Pneumocystis </it>colonization acquired via environmental exposure in humans. The results also illustrate the difficulties in keeping mice from exposure to <it>P. murina </it>even when housed under barrier conditions.</p

    Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    Get PDF
    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces
    corecore