11 research outputs found

    Randomized Controlled Trial of RTS,S/AS02D and RTS,S/AS01E Malaria Candidate Vaccines Given According to Different Schedules in Ghanaian Children

    Get PDF
    Background:The target delivery channel of RTS,S candidate malaria vaccines in malaria-endemic countries in Africa is the World Health Organisation Expanded Program on Immunization. As an Adjuvant System, age de-escalation and schedule selection step, this study assessed 3 schedules of RTS,S/AS01E and RTS,S/AS02D in infants and young children 5–17 months of age in Ghana.Methodology:A Phase II, partially-blind randomized controlled study (blind to vaccine, not to schedule), of 19 months duration was conducted in two (2) centres in Ghana between August 2006 and May 2008. Subjects were allocated randomly (1:1:1:1:1:1) to one of six study groups at each study site, each defining which vaccine should be given and by which schedule (0,1-, 0,1,2- or 0,1,7-months). For the 0,1,2-month schedule participants received RTS,S/AS01E or rabies vaccine at one center and RTS,S/AS01E or RTS,S/AS02D at the other. For the other schedules at both study sites, they received RTS,S/AS01E or RTS,S/AS02D. The primary outcome measure was the occurrence of serious adverse events until 10 months post dose 1.Results:The number of serious adverse events reported across groups was balanced. One child had a simple febrile convulsion, which evolved favourably without sequelae, considered to be related to RTS,S/AS01E vaccination. Low grade reactions occurred slightly more frequently in recipients of RTS,S/AS than rabies vaccines; grade 3 reactions were infrequent. Less local reactogenicity occurred with RTS,S/AS01E than RTS,S/AS02D. Both candidate vaccines were highly immunogenic for anti-circumsporozoite and anti-Hepatitis B Virus surface antigen antibodies. Recipients of RTS,S/AS01E compared to RTS,S/AS02D had higher peak anti-circumsporozoite antibody responses for all 3 schedules. Three dose schedules were more immunogenic than 2 dose schedules. Area under the curve analyses for anti-circumsporozoite antibodies were comparable between the 0,1,2- and 0,1,7-month RTS,S/AS01E schedules.Conclusions:Both candidate malaria vaccines were well tolerated. Anti-circumsporozoite responses were greater with RTS,S/AS01E than RTS,S/AS02D and when 3 rather than 2 doses were given. This study supports the selection of RTS,S/AS01E and a 3 dose schedule for further development in children and infants

    T Cell Responses to the RTS,S/AS01E and RTS,S/AS02D Malaria Candidate Vaccines Administered According to Different Schedules to Ghanaian Children

    Get PDF
    BACKGROUND: The Plasmodium falciparum pre-erythrocytic stage candidate vaccine RTS,S is being developed for protection of young children against malaria in sub-Saharan Africa. RTS,S formulated with the liposome based adjuvant AS01(E) or the oil-in-water based adjuvant AS02(D) induces P. falciparum circumsporozoite (CSP) antigen-specific antibody and T cell responses which have been associated with protection in the experimental malaria challenge model in adults. METHODS: This study was designed to evaluate the safety and immunogenicity induced over a 19 month period by three vaccination schedules (0,1-, 0,1,2- and 0,1,7-month) of RTS,S/AS01(E) and RTS,S/AS02(D) in children aged 5-17 months in two research centers in Ghana. Control Rabies vaccine using the 0,1,2-month schedule was used in one of two study sites. RESULTS: Whole blood antigen stimulation followed by intra-cellular cytokine staining showed RTS,S/AS01(E) induced CSP specific CD4 T cells producing IL-2, TNF-α, and IFN-γ. Higher T cell responses were induced by a 0,1,7-month immunization schedule as compared with a 0,1- or 0,1,2-month schedule. RTS,S/AS01(E) induced higher CD4 T cell responses as compared to RTS,S/AS02(D) when given on a 0,1,7-month schedule. CONCLUSIONS: These findings support further Phase III evaluation of RTS,S/AS01(E). The role of immune effectors and immunization schedules on vaccine protection are currently under evaluation. TRIAL REGISTRATION: ClinicalTrials.gov NCT00360230

    Very large-scale neuromorphic systems for biological signal processing

    No full text
    This chapter is a white paper describing a platform for scaled-up neuromorphic systems to ‘human brain size’ complexity. Such a system will be necessary for massive search and analysis tasks while interacting with biological data. This system would consist of similar number of neurons and synapses as in an adult human brain. One of the largest bottlenecks is the huge synaptic complexity that would result from connecting billions of neurons. The purpose of this chapter is to describe a feasible architecture that could handle the enormous communication bandwidth necessary for such a large-scale neuromorphic system. The proposed approach is grounded in the assumption that we would only be able to appreciate the utility of a neuromorphic system when it is somewhat similar to the human brain in terms of energy consumption and size. Inspired by the recent advancements in SoC architecture, a novel scalable intercluster communication network is proposed here. A particularly useful instantiation of this occurs for the global synaptic communication, interconnecting the local clusters of synapse arrays. The core of the proposed solution is a novel switching architecture in the CMOS back end of line (BEOL) that is expected to be extremely power efficient. In contrast to a fixed predefined bus that is shared over all connected local clusters, the proposed solution will allow a multitude of dedicated point-to-point connections that can be switched dynamically

    Transistor analogs of emergent iono-neuronal dynamics

    No full text
    Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications
    corecore