2,146 research outputs found

    Ranolazine Reduces Ca\u3csup\u3e2+\u3c/sup\u3e Overload and Oxidative Stress and Improves Mitochondrial Integrity to Protect Against Ischemia Reperfusion Injury in Isolated Hearts

    Get PDF
    Ranolazine is a clinically approved drug for treating cardiac ventricular dysrhythmias and angina. Its mechanism(s) of protection is not clearly understood but evidence points to blocking the late Na+ current that arises during ischemia, blocking mitochondrial complex I activity, or modulating mitochondrial metabolism. Here we tested the effect of ranolazine treatment before ischemia at the mitochondrial level in intact isolated hearts and in mitochondria isolated from hearts at different times of reperfusion. Left ventricular (LV) pressure (LVP), coronary flow (CF), and O2 metabolism were measured in guinea pig isolated hearts perfused with Krebs-Ringer’s solution; mitochondrial (m) O2 •−, Ca2+, NADH/FAD (redox state), and cytosolic (c) Ca2+ were assessed on-line in the LV free wall by fluorescence spectrophotometry. Ranolazine (5 μM), infused for 1min just before 30 min of global ischemia, itself did not change O2 •−, cCa2+, mCa2+ or redox state. During late ischemia and reperfusion (IR) O2 •− emission and m[Ca2+] increased less in the ranolazine group vs. the control group. Ranolazine decreased c [Ca2+] only during ischemia while NADH and FAD were not different during IR in the ranolazine vs. control groups. Throughout reperfusion LVP and CF were higher, and ventricular fibrillation was less frequent. Infarct size was smaller in the ranolazine group than the control group. Mitochondria isolated from ranolazinetreated hearts had mild resistance to permeability transition pore (mPTP) opening and less cytochrome c release than control hearts. Ranolazine may provide functional protection of the heart during IR injury by reducing cCa2+ and mCa2+ loading secondary to its effect to block the late Na+ current. Subsequently it indirectly reduces O2 •− emission, preserves bioenergetics, delays mPTP opening, and restricts loss of cytochrome c, thereby reducing necrosis and apoptosis

    Damage to Mitochondrial Complex I During Cardiac Ischemia Reperfusion Injury is Reduced Indirectly by Anti-anginal Drug Ranolazine

    Get PDF
    Ranolazine, an anti-anginal drug, is a late Na+ channel current blocker that is also believed to attenuate fatty acid oxidation and mitochondrial respiratory complex I activity, especially during ischemia. In this study, we investigated if ranolazine\u27s protective effect against cardiac ischemia/reperfusion (IR) injury is mediated at the mitochondrial level and specifically if respiratory complex I (NADH Ubiquinone oxidoreductase) function is protected. We treated isolated and perfused guinea pig hearts with ranolazine just before 30 min ischemia and then isolated cardiac mitochondria at the end of 30 min ischemia and/or 30 min ischemia followed by 10 min reperfusion. We utilized spectrophotometric and histochemical techniques to assay complex I activity, Western blot analysis for complex I subunit NDUFA9, electron paramagnetic resonance for activity of complex I Fe–S clusters, enzyme linked immuno sorbent assay (ELISA) for determination of protein acetylation, native gel histochemical staining for respiratory supercomplex assemblies, and high pressure liquid chromatography for cardiolipin integrity; cardiac function was measured during IR. Ranolazine treated hearts showed higher complex I activity and greater detectable complex I protein levels compared to untreated IR hearts. Ranolazine treatment also led to more normalized electron transfer via Fe–S centers, supercomplex assembly and cardiolipin integrity. These improvements in complex I structure and function with ranolazine were associated with improved cardiac function after IR. However, these protective effects of ranolazine are not mediated by a direct action on mitochondria, but rather indirectly via cytosolic mechanisms that lead to less oxidation and better structural integrity of complex I

    Tyrosine Nitration of Voltage-dependent Anion Channels in Cardiac Ischemia-reperfusion: Reduction by Peroxynitrite Scavenging

    Get PDF
    Excess superoxide (O2−) and nitric oxide (NO) forms peroxynitrite (ONOO−) during cardiac ischemia reperfusion (IR) injury, which in turn induces protein tyrosine nitration (tyr-N). Mitochondria are both a source of and target for ONOO−. Our aim was to identify specific mitochondrial proteins that display enhanced tyr-N after cardiac IR injury, and to explore whether inhibiting O2−/ONOO− during IR decreases mitochondrial protein tyr-N and consequently improves cardiac function. We show here that IR increased tyr-N of 35 and 15 kDa mitochondrial proteins using Western blot analysis with 3-nitrotyrosine antibody. Immunoprecipitation (IP) followed by LC–MS/MS identified 13 protein candidates for tyr-N. IP and Western blot identified and confirmed that the 35 kDa tyr-N protein is the voltage-dependent anion channel (VDAC). Tyr-N of native cardiac VDAC with IR was verified on recombinant (r) VDAC with exogenous ONOO−. We also found that ONOO− directly enhanced rVDAC channel activity, and rVDAC tyr-N induced by ONOO− formed oligomers. Resveratrol (RES), a scavenger of O2−/ONOO−, reduced the tyr-N levels of both native and recombinant VDAC, while L-NAME, which inhibits NO generation, only reduced tyr-N levels of native VDAC. O2− and ONOO− levels were reduced in perfused hearts during IR by RES and L-NAME and this was accompanied by improved cardiac function. These results identify tyr-N of VDAC and show that reducing ONOO− during cardiac IR injury can attenuate tyr-N of VDAC and improve cardiac function

    Energy-Momentum Localization for a Space-Time Geometry Exterior to a Black Hole in the Brane World

    Full text link
    In general relativity one of the most fundamental issues consists in defining a generally acceptable definition for the energy-momentum density. As a consequence, many coordinate-dependent definitions have been presented, whereby some of them utilize appropriate energy-momentum complexes. We investigate the energy-momentum distribution for a metric exterior to a spherically symmetric black hole in the brane world by applying the Landau-Lifshitz and Weinberg prescriptions. In both the aforesaid prescriptions, the energy thus obtained depends on the radial coordinate, the mass of the black hole and a parameter λ0\lambda_{0}, while all the momenta are found to be zero. It is shown that for a special value of the parameter λ0\lambda_{0}, the Schwarzschild space-time geometry is recovered. Some particular and limiting cases are also discussed.Comment: 10 pages, sections 1 and 3 slightly modified, references modified and adde

    Distribution of Energy-Momentum in a Schwarzschild-Quintessence Space-time Geometry

    Full text link
    An analysis of the energy-momentum localization for a four-dimensional\break Schwarzschild black hole surrounded by quintessence is presented in order to provide expressions for the distributions of energy and momentum. The calculations are performed by using the Landau-Lifshitz and Weinberg energy-momentum complexes. It is shown that all the momenta vanish, while the expression for the energy depends on the mass MM of the black hole, the state parameter wqw_{q} and the normalization factor cc. The special case of wq=2/3w_{q}=-2/3 is also studied, and two limiting cases are examined.Comment: 9 page

    Protection Against Cardiac Injury by Small Ca\u3csup\u3e2 +\u3c/sup\u3e-Sensitive K\u3csup\u3e+\u3c/sup\u3e Channels Identified in Guinea Pig Cardiac Inner Mitochondrial Membrane

    Get PDF
    We tested if small conductance, Ca2 +‐sensitive K+ channels (SKCa) precondition hearts against ischemia reperfusion (IR) injury by improving mitochondrial (m) bioenergetics, if O2‐derived free radicals are required to initiate protection via SKCa channels, and, importantly, if SKCa channels are present in cardiac cell inner mitochondrial membrane (IMM). NADH and FAD, superoxide (O2−), and m[Ca2 +] were measured in guinea pig isolated hearts by fluorescence spectrophotometry. SKCa and IKCa channel opener DCEBIO (DCEB) was given for 10 min and ended 20 min before IR. Either TBAP, a dismutator of O2−, NS8593, an antagonist of SKCa isoforms, or other KCa and KATP channel antagonists, were given before DCEB and before ischemia. DCEB treatment resulted in a 2-fold increase in LV pressure on reperfusion and a 2.5 fold decrease in infarct size vs. non-treated hearts associated with reduced O2− and m[Ca2 +], and more normalized NADH and FAD during IR. Only NS8593 and TBAP antagonized protection by DCEB. Localization of SKCa channels to mitochondria and IMM was evidenced by a) identification of purified mSKCa protein by Western blotting, immuno-histochemical staining, confocal microscopy, and immuno-gold electron microscopy, b) 2-D gel electrophoresis and mass spectroscopy of IMM protein, c) [Ca2 +]‐dependence of mSKCa channels in planar lipid bilayers, and d) matrix K+ influx induced by DCEB and blocked by SKCa antagonist UCL1684. This study shows that 1) SKCa channels are located and functional in IMM, 2) mSKCa channel opening by DCEB leads to protection that is O2−dependent, and 3) protection by DCEB is evident beginning during ischemia

    Yang-Mills Interactions and Gravity in Terms of Clifford Algebra

    Get PDF
    A model of Yang-Mills interactions and gravity in terms of the Clifford algebra Cl(0,6) is presented. The gravity and Yang-Mills actions are formulated as different order terms in a generalized action. The feebleness of gravity as well as the smallness of the cosmological constant and theta terms are discussed at the classical level. The invariance groups, including the de Sitter and the Pati-Salam SU(4) subgroups, consist of gauge transformations from either side of an algebraic spinor. Upon symmetry breaking via the Higgs fields, the remaining symmetries are the Lorentz SO(1,3), color SU(3), electromagnetic U(1)_EM, and an additional U(1). The first generation leptons and quarks are identified with even and odd parts of spinor idempotent projections. There are still several shortcomings with the current model. Further research is needed to fully recover the standard model results.Comment: 20 pages, to appear in Advances in Applied Clifford Algebra
    corecore