1,012 research outputs found
Tomographic Simulations of Accretion Disks in Cataclysmic Variables - Flickering and Wind
Both continuum and emission line flickering are phenomena directly associated
with the mass accretion process. In this work we simulate accretion disk
Doppler maps including the effects of winds and flickering flares. Synthetic
flickering Doppler maps are calculated and the effect of the flickering
parameters on the maps is explored. Jets and winds occur in many astrophysical
objects where accretion disks are present. Jets are generally absent among the
cataclysmic variables (CVs), but there is evidence of mass loss by wind in many
objects. CVs are ideal objects to study accretion disks and consequently to
study the wind associated with these disks. We also present simulations of
accretion disks including the presence of a wind with orbital phase resolution.
Synthetic H-alpha line profiles in the optical region are obtained and their
corresponding Doppler maps are calculated. The effect of the wind simulation
parameters on the wind line profiles is also explored. From this study we
verified that optically thick lines and/or emission by diffuse material into
the primary Roche lobe are necessary to generate single peaked line profiles,
often seen in CVs. The future accounting of these effects is suggested for
interpreting Doppler tomography reconstructions.Comment: 9 pages, 9 figure
A far-ultraviolet variable with an 18-minute period in the globular cluster NGC 1851
We present the detection of a variable star with an 18.05 minute period in far-ultraviolet (FUV) images of the globular cluster NGC 1851 taken with the Hubble Space Telescope (HST). A candidate optical counterpart lies on the red horizontal branch or the asymptotic giant branch star of the cluster, but it is statistically possible that this is a chance superposition. This interpretation is supported by optical spectroscopt obtained with HST/STIS: the spectrum contains none of the strong emission lines that would be expected if the object was a symbiotic star (i.e. a compact accretor fed by a giant donor). We therefore consider two other possibilities for the nature of FUV variable: (i) an intermediate polar (i.e. a compact binary containing an accreting magnetic white dwarf), or (ii) an AM CVn star (i.e. an interacting double-degenerate system). In the intermediate polar scenario, the object is expected to be an X-ray source. However, no X-rays are detected at its location in ? 65 ksec of Chandra imaging, which limits the X-ray luminosity to LX ? 1032 erg s?1. We therefore favour the AM CVn interpretation, but a FUV spectrum is needed to distinguish conclusively between the two possibilities. If the object is an AM CVn binary, it would be the first such system known in any globular cluster
New evidence for strong nonthermal effects in Tycho's supernova remnant
For the case of Tycho's supernova remnant (SNR) we present the relation
between the blast wave and contact discontinuity radii calculated within the
nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is
demonstrated that these radii are confirmed by recently published Chandra
measurements which show that the observed contact discontinuity radius is so
close to the shock radius that it can only be explained by efficient CR
acceleration which in turn makes the medium more compressible. Together with
the recently determined new value erg of the SN
explosion energy this also confirms our previous conclusion that a TeV
gamma-ray flux of erg/(cms) is to be expected from
Tycho's SNR. Chandra measurements and the HEGRA upper limit of the TeV
gamma-ray flux together limit the source distance to kpc.Comment: 5 pages, 4 figures. Accepted for publication in Astrophysics and
Space Science, Proc. of "The Multi-Messenger Approach to High-Energy
Gamma-ray Sources (Third Workshop on the Nature of Unidentified High-Energy
Sources)", Barcelona, July 4-7, 200
On the spherical-axial transition in supernova remnants
A new law of motion for supernova remnant (SNR) which introduces the quantity
of swept matter in the thin layer approximation is introduced. This new law of
motion is tested on 10 years observations of SN1993J. The introduction of an
exponential gradient in the surrounding medium allows to model an aspherical
expansion. A weakly asymmetric SNR, SN1006, and a strongly asymmetric SNR,
SN1987a, are modeled. In the case of SN1987a the three observed rings are
simulated.Comment: 19 figures and 14 pages Accepted for publication in Astrophysics &
Space Science in the year 201
Guiding the Way to Gamma-Ray Sources: X-ray Studies of Supernova Remnants
Supernova remnants have long been suggested as a class of potential
counterparts to unidentified gamma-ray sources. The mechanisms by which such
gamma-rays can arise may include emission from a pulsar associated with a
remnant, or a variety of processes associated with energetic particles
accelerated by the SNR shock. Imaging and spectral observations in the X-ray
band can be used to identify properties of the remnants that lead to gamma-ray
emission, including the presence of pulsar-driven nebulae, nonthermal X-ray
emission from the SNR shells, and the interaction of SNRs with dense
surrounding material.Comment: 16 pages, 11 figures, To appear in the proceedings of the workshop:
"The Nature of the Unidentified Galactic Gamma-Ray Sources" held at INAOE,
Mexico, October 2000, (A.Carraminana, O. Reiner and D. Thompson, eds.
Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"
``EIT waves" are large-scale coronal bright fronts (CBFs) that were first
observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging
Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}.
Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that
propagate pseudo-radially across the solar disk at velocities of 100--700 km
s with front widths of 50-100 Mm. As their speed is greater than the
quiet coronal sound speed (200 km s) and comparable to the
local Alfv\'{e}n speed (1000 km s), they were initially
interpreted as fast-mode magnetoacoustic waves ().
Their propagation is now known to be modified by regions where the magnetosonic
sound speed varies, such as active regions and coronal holes, but there is also
evidence for stationary CBFs at coronal hole boundaries. The latter has led to
the suggestion that they may be a manifestation of a processes such as Joule
heating or magnetic reconnection, rather than a wave-related phenomena. While
the general morphological and kinematic properties of CBFs and their
association with coronal mass ejections have now been well described, there are
many questions regarding their excitation and propagation. In particular, the
theoretical interpretation of these enigmatic events as magnetohydrodynamic
waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure
The Energy of Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics
According to the Einstein, Weinberg, and M{\o}ller energy-momentum complexes,
we evaluate the energy distribution of the singularity-free solution of the
Einstein field equations coupled to a suitable nonlinear electrodynamics
suggested by Ay\'{o}n-Beato and Garc\'{i}a. The results show that the energy
associated with the definitions of Einstein and Weinberg are the same, but
M{\o}ller not. Using the power series expansion, we find out that the first two
terms in the expression are the same as the energy distributions of the
Reissner-Nordstr\"{o}m solution, and the third term could be used to survey the
factualness between numerous solutions of the Einstein field eqautions coupled
to a nonlinear electrodynamics.Comment: 11 page
Understanding hadronic gamma-ray emission from supernova remnants
We aim to test the plausibility of a theoretical framework in which the
gamma-ray emission detected from supernova remnants may be of hadronic origin,
i.e., due to the decay of neutral pions produced in nuclear collisions
involving relativistic nuclei. In particular, we investigate the effects
induced by magnetic field amplification on the expected particle spectra,
outlining a phenomenological scenario consistent with both the underlying
Physics and the larger and larger amount of observational data provided by the
present generation of gamma experiments, which seem to indicate rather steep
spectra for the accelerated particles. In addition, in order to study to study
how pre-supernova winds might affect the expected emission in this class of
sources, the time-dependent gamma-ray luminosity of a remnant with a massive
progenitor is worked out. Solid points and limitations of the proposed scenario
are finally discussed in a critical way.Comment: 30 pages, 5 figures; Several comments, references and a figure added.
Some typos correcte
On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode
A major, albeit serendipitous, discovery of the SOlar and Heliospheric
Observatory mission was the observation by the Extreme Ultraviolet Telescope
(EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating
over a significant fraction of the Sun's surface. These so-called EIT or EUV
waves are associated with eruptive phenomena and have been studied intensely.
However, their wave nature has been challenged by non-wave (or pseudo-wave)
interpretations and the subject remains under debate. A string of recent solar
missions has provided a wealth of detailed EUV observations of these waves
bringing us closer to resolving their nature. With this review, we gather the
current state-of-art knowledge in the field and synthesize it into a picture of
an EUV wave driven by the lateral expansion of the CME. This picture can
account for both wave and pseudo-wave interpretations of the observations, thus
resolving the controversy over the nature of EUV waves to a large degree but
not completely. We close with a discussion of several remaining open questions
in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for
publicatio
The 3-3-1 model with S_4 flavor symmetry
We construct a 3-3-1 model based on family symmetry S_4 responsible for the
neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal
quark mixing have been obtained. The new lepton charge \mathcal{L} related to
the ordinary lepton charge L and a SU(3) charge by L=2/\sqrt{3} T_8+\mathcal{L}
and the lepton parity P_l=(-)^L known as a residual symmetry of L have been
introduced which provide insights in this kind of model. The expected vacuum
alignments resulting in potential minimization can origin from appropriate
violation terms of S_4 and \mathcal{L}. The smallness of seesaw contributions
can be explained from the existence of such terms too. If P_l is not broken by
the vacuum values of the scalar fields, there is no mixing between the exotic
and the ordinary quarks at the tree level.Comment: 20 pages, revised versio
- …
