206 research outputs found
Closing the Windows on Mev Tau Neutrinos
In this note, we analyze various constraints on the ``visible'' decay modes
of a massive neutrino, and
, where is a light
neutrino. The BEBC beam dump experiment provides model-independent constraints
on these modes. The lifetime for the mode is constrained
to be We point
out that the same experiment implies a similar constraint on the
mode. This results in a new upper limit on the transition
magnetic moment of , . Furthermore, a limit on the electric charge of
may be obtained, . Combining
these constraints with those arising from supernova observations and primordial
nucleosynthesis calculations, we show that these ``visible'' decays cannot be
the dominant decay modes of the neutrino.Comment: 8 pgs. LaTeX (1 uuencoded fig., also available on request),
Bartol-930XXX, JHU-TIPAC-930026, UM-TH-93-2
Correlation energies of inhomogeneous many-electron systems
We generalize the uniform-gas correlation energy formalism of Singwi, Tosi,
Land and Sjolander to the case of an arbitrary inhomogeneous many-particle
system. For jellium slabs of finite thickness with a self-consistent LDA
groundstate Kohn-Sham potential as input, our numerical results for the
correlation energy agree well with diffusion Monte Carlo results. For a helium
atom we also obtain a good correlation energy.Comment: 4 pages,1 figur
Atom gratings produced by large angle atom beam splitters
An asymptotic theory of atom scattering by large amplitude periodic
potentials is developed in the Raman-Nath approximation. The atom grating
profile arising after scattering is evaluated in the Fresnel zone for
triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It
is shown that, owing to the scattering in these potentials, two
\QTR{em}{groups} of momentum states are produced rather than two distinct
momentum components. The corresponding spatial density profile is calculated
and found to differ significantly from a pure sinusoid.Comment: 16 pages, 7 figure
Experimental evidence for 56Ni-core breaking from the low-spin structure of the N=Z nucleus 58Cu
Low-spin states in the odd-odd N=Z nucleus 58Cu were investigated with the
58Ni(p,n gamma)58Cu fusion evaporation reaction at the FN-tandem accelerator in
Cologne. Seventeen low spin states below 3.6 MeV and 17 new transitions were
observed. Ten multipole mixing ratios and 17 gamma-branching ratios were
determined for the first time. New detailed spectroscopic information on the
2+,2 state, the Isobaric Analogue State (IAS) of the 2+,1,T=1 state of 58Ni,
makes 58Cu the heaviest odd-odd N=Z nucleus with known B(E2;2+,T=1 --> 0+,T=1)
value. The 4^+ state at 2.751 MeV, observed here for the first time, is
identified as the IAS of the 4+,1,T=1 state in 58Ni. The new data are compared
to full pf-shell model calculations with the novel GXPF1 residual interaction
and to calculations within a pf5/2 configurational space with a residual
surface delta interaction. The role of the 56Ni core excitations for the
low-spin structure in 58Cu is discussed.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
Dark matter and Colliders searches in the MSSM
We study the complementarity between dark matter experiments (direct
detection and indirect detections) and accelerator facilities (the CERN LHC and
a TeV Linear Collider) in the framework of the
constrained Minimal Supersymmetric Standard Model (MSSM). We show how
non--universality in the scalar and gaugino sectors can affect the experimental
prospects to discover the supersymmetric particles. The future experiments will
cover a large part of the parameter space of the MSSM favored by WMAP
constraint on the relic density, but there still exist some regions beyond
reach for some extreme (fine tuned) values of the supersymmetric parameters.
Whereas the Focus Point region characterized by heavy scalars will be easily
probed by experiments searching for dark matter, the regions with heavy
gauginos and light sfermions will be accessible more easily by collider
experiments. More informations on both supersymmetry and astrophysics
parameters can be thus obtained by correlating the different signals.Comment: 25 pages, 10 figures, corrected typos and reference adde
High Energy Processes in Pulsar Wind Nebulae
Young pulsars produce relativistic winds which interact with matter ejected
during the supernova explosion and the surrounding interstellar gas. Particles
are accelerated to very high energies somewhere in the pulsar winds or at the
shocks produced in collisions of the winds with the surrounding medium. As a
result of interactions of relativistic leptons with the magnetic field and low
energy radiation (of synchrotron origin, thermal, or microwave background), the
non-thermal radiation is produced with the lowest possible energies up to
100 TeV. The high energy (TeV) gamma-ray emission has been originally
observed from the Crab Nebula and recently from several other objects. Recent
observations by the HESS Cherenkov telescopes allow to study for the first time
morphology of the sources of high energy emission, showing unexpected spectral
features. They might be also interpreted as due to acceleration of hadrons.
However, theory of particle acceleration in the PWNe and models for production
of radiation are still at their early stage of development since it becomes
clear that realistic modeling of these objects should include their time
evolution and three-dimensional geometry. In this paper we concentrate on the
attempts to create a model for the high energy processes inside the PWNe which
includes existence not only relativistic leptons but also hadrons inside the
nebula. Such model should also take into account evolution of the nebula in
time. Possible high energy expectations based on such a model are discussed in
the context of new observations.Comment: 9 pages, 1 figure, Proc. Multimessenger approach to high energy
gamma-ray source
Formation and Evolution of Supermassive Black Holes
The correlation between the mass of supermassive black holes in galaxy nuclei
and the mass of the galaxy spheroids or bulges (or more precisely their central
velocity dispersion), suggests a common formation scenario for galaxies and
their central black holes. The growth of bulges and black holes can commonly
proceed through external gas accretion or hierarchical mergers, and are both
related to starbursts. Internal dynamical processes control and regulate the
rate of mass accretion. Self-regulation and feedback are the key of the
correlation. It is possible that the growth of one component, either BH or
bulge, takes over, breaking the correlation, as in Narrow Line Seyfert 1
objects. The formation of supermassive black holes can begin early in the
universe, from the collapse of Population III, and then through gas accretion.
The active black holes can then play a significant role in the re-ionization of
the universe. The nuclear activity is now frequently invoked as a feedback to
star formation in galaxies, and even more spectacularly in cooling flows. The
growth of SMBH is certainly there self-regulated. SMBHs perturb their local
environment, and the mergers of binary SMBHs help to heat and destroy central
stellar cusps. The interpretation of the X-ray background yields important
constraints on the history of AGN activity and obscuration, and the census of
AGN at low and at high redshifts reveals the downsizing effect, already
observed for star formation. History appears quite different for bright QSO and
low-luminosity AGN: the first grow rapidly at high z, and their number density
decreases then sharply, while the density of low-luminosity objects peaks more
recently, and then decreases smoothly.Comment: 31 pages, 13 figures, review paper for Astrophysics Update
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
Recommended from our members
The subjective experiences of people who regularly receive depot neuroleptic medication in the community
Little has been written on the subjective experiences of people who receive depot injections in the community. The authors of this paper have identified distinct gaps in the literature in terms of the views of service users regarding this particular intervention. Existing studies tend to focus upon the side effects of depot neuroleptic medication and the attitudes of Community Mental Health Nurses (CMHNs) towards administering depot medication and issues of compliance and non-compliance. Mental health nurses are frequently perceived as adhering solely to a biomedical approach to patient care in their practice and the therapeutic aspects of their role is frequently unacknowledged. This paper explores how, within the process of giving a depot injection, CMHNs are able to carry out an assessment of their client's needs as well as being someone who is consistent, reliable and supportive. This means that the process of giving a depot injection may be considered as a therapeutic intervention. Qualitative data were obtained through the administration of a semi-structured interview schedule that was constructed and consisted of a range of questions that elicited service users views and opinions related to their experiences of receiving depot neuroleptic medication in the community. The relationship between patient and nurse, as this study reveals, was one that was not only therapeutic, but also provided a forum where psychosocial and clinical issues could be discussed and explored. Crucially, the service users felt they did have a role and an influence in the delivery of their care
- …