28 research outputs found

    Enhanced Diffusion in Shock Activated Be-Al Interfaces

    No full text
    Une augmentation de la diffusion de l'aluminium dans le beryllium activé par choc a été observée. Des échantillons cylindriques de barreaux de beryllium revêtus d'aluminium ont été soumis de manière axisymétrique à un choc jusqu'à 40gpa et une déformation résiduelle totale jusqu'à 6,7%. Les défauts dans la microstructure dûs à la fois par l'onde de choc et la déformation permet au transport de l'aluminium dans le beryllium de dépasser la saturation de son état solide à l'équilibre. Cette super saturation en aluminium apparaît, après chauffage, à une température relativement faible et forme des interfaces très résistants.Enhanced diffusion of aluminum in shock activated beryllium has been observed. Cylindrical samples of aluminum coated beryllium rods were axisymetrically loaded up to 40 Gpa and a total residual strain of up to 6,7%. The defect microstructure produced by both the shock ware and strain enabled the transport of aluminum in beryllium to exceed its equilibrium solid state saturation. This "super saturated" aluminum, upon heating exsolves out at relatively low temperatures and forms very strong interfaces with pressure mated components

    PRESSURE-STRAIN-TEMPERATURE RELATIONSHIP IN SHOCK LOADED CYLINDRICAL SAMPLES OF 304 STAINLESS STEEL

    Get PDF
    On décrit l'évolution de la température résiduelle déduite des relations pression-déformation pour un échantillon cylindrique axisymétrique d'acier inoxydable 304. Des explosions axisymétriques conduisent à des relations non uniformes entre pression déformation et température encore incomplètement comprises. Cet article décrit chaque contribution de la température et l'effet notable induit sur l'échantillon.The residual temperature resulting from pressure-strain relationships in an axisymmetric cylindrical sample of 304 stainless steel are described. Axisymmetric implosions result in nonuniform pressure-strain-temperature combinations that need to be better understood. This paper describes each temperature contribution and the net effect on the sample

    Experimental approach to shock synthesis using pressure-temperature-strain data

    No full text
    An understanding of the shock conditions that optimise true shock synthesis, not shock initiation, must be understood. Simply the mixing of powdered materials and shock loading them is at best a hit and miss proposition. A shock loading technique, using an axi-symmetric radial implosion technique that produces a Mach-stem region upon convergence of the shock wave results in pressure-temperatures that for the most materials exceed their melting temperatures. As the shock wave passes through, the resultant melt is pressure/temperature quenched. This technique has produced metastable concentrations of several alloys. Various parameters utilizing high pressure-temperature data are assessed towards increasing solubility beyond equilibrium. This paper will describe the current understanding and basic premise as well as the experimental technique used to obtain these conditions

    Measurement of strain heat in shock-loaded 304 stainless steel: Implications to powder consolidation

    No full text
    Over the past decades there have been numerous papers on the shock response of materials and more specifically towards metal powder compaction and consolidation. In general, the shock process for powdered materials has utilized the traditional pressure-volume shock relationships proportioned to the initial packing densities of the powders. However, this approach and its resulting data are in controversy due to the lack of knowledge of its associated particle strain and strain temperature uncertainties. This paper will describe the current understanding as well as the experimental technique used to obtain the shock response for distended materials. The above parameters are described within a pressure-strain-temperature interdependence. It was found that the experimentally measured strain heat was not only a function of initial packing density but also a function of powder size and distribution
    corecore