5 research outputs found

    Bulk experimental evidence of half-metallic ferromagnetism in doped manganites

    Full text link
    We report precise measurements and quantitative data analysis on the low-temperature resistivity of several ferromagnetic manganite films. We clearly show that there exists a T^{4.5} term in low-temperature resistivity, and that this term is in quantitative agreement with the quantum theory of two-magnon scattering for half metallic ferromagnets. Our present results provide the first bulk experimental evidence of half-metallic ferromagnetism in doped manganites.Comment: 4 pages, 4 figure

    First principles electronic structure of spinel LiCr2O4: A possible half-metal?

    Full text link
    We have employed first-principles electronic structure calculations to examine the hypothetical (but plausible) oxide spinel, LiCr2O4 with the d^{2.5} electronic configuration. The cell (cubic) and internal (oxygen position) structural parameters have been obtained for this compound through structural relaxation in the first-principles framework. Within the one-electron band picture, we find that LiCr2O4 is magnetic, and a candidate half-metal. The electronic structure is substantially different from the closely related and well known rutile half-metal CrO2. In particular, we find a smaller conduction band width in the spinel compound, perhaps as a result of the distinct topology of the spinel crystal structure, and the reduced oxidation state. The magnetism and half-metallicity of LiCr2O4 has been mapped in the parameter space of its cubic crystal structure. Comparisons with superconducting LiTi2O4 (d^{0.5}), heavy-fermion LiV2O4 (d^{1.5}) and charge-ordering LiMn2O4 (d^{3.5}) suggest the effectiveness of a nearly-rigid band picture involving simple shifts of the position of E_F in these very different materials. Comparisons are also made with the electronic structure of ZnV2O4 (d^{2}), a correlated insulator that undergoes a structural and antiferromagnetic phase transition.Comment: 9 pages, 7 Figures, version as published in PR
    corecore