1,217 research outputs found

    Gauged Fermionic Q-balls

    Full text link
    We present a new model for a non-topological soliton (NTS) that contains interacting fermions, scalar particles and a gauge field. Using a variational approach, we estimate the energy of the localized configuration, showing that it can be the lowest energy state of the system for a wide range of parameters.Comment: 5 pages, 2 figures; revised version to appear in Phys. Rev.

    Cold Induction of EARLI1, a Putative Arabidopsis Lipid Transfer Protein, Is Light and Calcium Dependent

    Get PDF
    As sessile organisms, plants must adapt to their environment. One approach toward understanding this adaptation is to investigate environmental regulation of gene expression. Our focus is on the environmental regulation of EARLI1, which is activated by cold and long-day photoperiods. Cold activation of EARLI1 in short-day photoperiods is slow, requiring several hours at 4ºC to detect an increase in mRNA abundance. EARLI1 is not efficiently cold-activated in etiolated seedlings, suggesting that photomorphogenesis is necessary for its cold activation. Cold activation of EARLI1 is inhibited in the presence of the calcium channel blocker lanthanum chloride or the calcium chelator EGTA. Addition of the calcium ionophore Bay K8644 results in cold-independent activation of EARLI1. These data suggest that EARLI1 is not an immediate target of the cold response, and that calcium flux affects its expression. EARLI1 is a putative secreted protein and has motifs found in lipid transfer proteins. Over-expression of EARLI1 in transgenic plants results in reduced electrolyte leakage during freezing damage, suggesting that EARLI1 may affect membrane or cell wall stability in response to low temperature stress

    Complex zeros of the 2d Ising model on dynamical random lattices

    Get PDF
    We study the zeros in the complex plane of the partition function for the Ising model coupled to 2d2d quantum gravity for complex magnetic field and for complex temperature. We compute the zeros by using the exact solution coming from a two matrix model and by Monte Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional patterns in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of singularities near the critical point.Comment: 3 pages, 8 figures, latex2e, uses espcrc2.sty. Contribution to Lattice '97, Edinburgh, July 1997, to appear on Nucl. Phys. B (Proc. Suppl.

    Maxwell-Chern-Simons Q-balls

    Get PDF
    We examine the energetics of QQ-balls in Maxwell-Chern-Simons theory in two space dimensions. Whereas gauged QQ-balls are unallowed in this dimension in the absence of a Chern-Simons term due to a divergent electromagnetic energy, the addition of a Chern-Simons term introduces a gauge field mass and renders finite the otherwise-divergent electromagnetic energy of the QQ-ball. Similar to the case of gauged QQ-balls, Maxwell-Chern-Simons QQ-balls have a maximal charge. The properties of these solitons are studied as a function of the parameters of the model considered, using a numerical technique known as relaxation. The results are compared to expectations based on qualitative arguments.Comment: 6 pages. Talk given at Theory CANADA 2, Perimeter Institut

    Gauged Dimension Bubbles

    Full text link
    Some of the peculiar electrodynamical effects associated with gauged ``dimension bubbles'' are presented. Such bubbles, which effectively enclose a region of 5d spacetime, can arise from a 5d theory with a compact extra dimension. Bubbles with thin domain walls can be stabilized against total collapse by the entrapment of light charged scalar bosons inside the bubble, extending the idea of a neutral dimension bubble to accommodate the case of a gauged U(1) symmetry. Using a dielectric approach to the 4d dilaton-Maxwell theory, it is seen that the bubble wall is almost totally opaque to photons, leading to a new stabilization mechanism due to trapped photons. Photon dominated bubbles very slowly shrink, resulting in a temperature increase inside the bubble. At some critical temperature, however, these bubbles explode, with a release of radiation.Comment: 14 pages, no figures; to appear in Phys.Rev.

    Magnetic Field Dependence of the Paramagnetic to the High Temperature Magnetically Ordered Phase Transition in CeB6

    Full text link
    We have measured the magnetic field dependence of the paramagnetic to high temperature magnetically ordered phase transition TQ(H) in CeB6 from 2 to 30 T using cantilever magnetometry. It is found that the phase separation temperature continuously increases in field with an increasingly positive slope. In addition, we find that measurements in strong magnetic field gradients have no effect on the phase transition.Comment: 6 total page including 3 figures, submitted to Physical Review B (also available at http://publish.aps.org/eprint/gateway/eplist/aps1999dec08_006) v2: Corrected typos, added 1 reference, minor content changes (deleted 1 sentence in introduction, added 2 sentences in discussion to explain added reference), fixed the "et al"s in the bibliograph

    Investigate Bending Effect of Wearable GPS Patch Antenna with Denim and Polyester Fabric Substrate

    Get PDF
    In high technologies today, wearable devices have become popular. Wearable technology is a body sensing system that supports application of health observance and tracking through a wearable Global Positioning System (GPS). The design of the patch antennas is highly significant for the brilliance of the wearable patch antennas. This paper focuses on analyzing the bending effect on return loss and frequency between three types of GPS patch antenna. Types of GPS patch antennas that have been designed in this project are with different substrates and different designs. The wearable patch antenna has been designed and analyse using CST software. As a result, able to analysis the reflection coefficient (S11), radiation patterns, and analytical approach for patch antenna bending effect were obtained

    Self-induced and induced transparencies of two-dimensional and three- dimensional superlattices

    Full text link
    The phenomenon of transparency in two-dimensional and three-dimensional superlattices is analyzed on the basis of the Boltzmann equation with a collision term encompassing three distinct scattering mechanisms (elastic, inelastic and electron-electron) in terms of three corresponding distinct relaxation times. On this basis, we show that electron heating in the plane perpendicular to the current direction drastically changes the conditions for the occurrence of self-induced transparency in the superlattice. In particular, it leads to an additional modulation of the current amplitudes excited by an applied biharmonic electric field with harmonic components polarized in orthogonal directions. Furthermore, we show that self-induced transparency and dynamic localization are different phenomena with different physical origins, displaced in time from each other, and, in general, they arise at different electric fields.Comment: to appear in Physical Review

    Anisotropic three-dimentional magnetic fluctuations in heavy fermion CeRhIn5

    Full text link
    CeRhIn5 is a heavy fermion antiferromagnet that orders at 3.8 K. The observation of pressure-induced superconductivity in CeRhIn5 at a very high Tc of 2.1 K for heavy fermion materials has led to speculations regarding to its magnetic fluctuation spectrum. Using magnetic neutron scattering, we report anisotropic three-dimensional antiferromagnetic fluctuations with an energy scale of less than 1.7 meV for temperatures as high as 3Tc. In addition, the effect of the magnetic fluctuations on electrical resistivity is well described by the Born approximation.Comment: 4 pages, 4 figure
    corecore