137 research outputs found

    Trafficking dynamics of VEGFR1, VEGFR2, and NRP1 in human endothelial cells

    Get PDF
    The vascular endothelial growth factor (VEGF) family of cytokines are key drivers of blood vessel growth and remodeling. These ligands act via multiple VEGF receptors (VEGFR) and co-receptors such as Neuropilin (NRP) expressed on endothelial cells. These membrane- associated receptors are not solely expressed on the cell surface, they move between the surface and intracellular locations, where they can function differently. The location of the receptor alters its ability to 'see' (access and bind to) its ligands, which regulates receptor activation; location also alters receptor exposure to subcellularly localized phosphatases, which regulates its deactivation. Thus, receptors in different subcellular locations initiate different signaling, both in terms of quantity and quality. Similarly, the local levels of co-expression of other receptors alters competition for ligands. Subcellular localization is controlled by intracellular trafficking processes, which thus control VEGFR activity; therefore, to understand VEGFR activity, we must understand receptor trafficking. Here, for the first time, we simultaneously quantify the trafficking of VEGFR1, VEGFR2, and NRP1 on the same cells-specifically human umbilical vein endothelial cells (HUVECs). We build a computational model describing the expression, interaction, and trafficking of these receptors, and use it to simulate cell culture experiments. We use new quantitative experimental data to parameterize the model, which then provides mechanistic insight into the trafficking and localization of this receptor network. We show that VEGFR2 and NRP1 trafficking is not the same on HUVECs as on non-human ECs; and we show that VEGFR1 trafficking is not the same as VEGFR2 trafficking, but rather is faster in both internalization and recycling. As a consequence, the VEGF receptors are not evenly distributed between the cell surface and intracellular locations, with a very low percentage of VEGFR1 being on the cell surface, and high levels of NRP1 on the cell surface. Our findings have implications both for the sensing of extracellular ligands and for the composition of signaling complexes at the cell surface versus inside the cell

    A global cline in a colour polymorphism suggests a limited contribution of gene flow towards the recovery of a heavily exploited marine mammal

    Get PDF
    Evaluating how populations are connected by migration is important for understanding species resilience because gene flow can facilitate recovery from demographic declines. We therefore investigated the extent to which migration may have contributed to the global recovery of the Antarctic fur seal (Arctocephalus gazella), a circumpolar distributed marine mammal that was brought to the brink of extinction by the sealing industry in the eighteenth and nineteenth centuries. It is widely believed that animals emigrating from South Georgia, where a relict population escaped sealing, contributed to the re-establishment of formerly occupied breeding colonies across the geographical range of the species. To investigate this, we interrogated a genetic polymorphism (S291F) in the melanocortin 1 receptor gene, which is responsible for a cream-coloured phenotype that is relatively abundant at South Georgia and which appears to have recently spread to localities as far afield as Marion Island in the sub-Antarctic Indian Ocean. By sequencing a short region of this gene in 1492 pups from eight breeding colonies, we showed that S291F frequency rapidly declines with increasing geographical distance from South Georgia, consistent with locally restricted gene flow from South Georgia mainly to the South Shetland Islands and BouvetĂžya. The S291F allele was not detected farther afield, suggesting that although emigrants from South Georgia may have been locally important, they are unlikely to have played a major role in the recovery of geographically more distant populations

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    A global cline in a colour polymorphism suggests a limited contribution of gene flow towards the recovery of a heavily exploited marine mammal

    Get PDF
    Evaluating how populations are connected by migration is important for understanding species resilience because gene flow can facilitate recovery from demographic declines. We therefore investigated the extent to which migration may have contributed to the global recovery of the Antarctic fur seal (Arctocephalus gazella), a circumpolar distributed marine mammal that was brought to the brink of extinction by the sealing industry in the eighteenth and nineteenth centuries. It is widely believed that animals emigrating from South Georgia, where a relict population escaped sealing, contributed to the re-establishment of formerly occupied breeding colonies across the geographical range of the species. To investigate this, we interrogated a genetic polymorphism (S291F) in the melanocortin 1 receptor gene, which is responsible for a cream-coloured phenotype that is relatively abundant at South Georgia and which appears to have recently spread to localities as far afield as Marion Island in the sub-Antarctic Indian Ocean. By sequencing a short region of this gene in 1492 pups from eight breeding colonies, we showed that S291F frequency rapidly declines with increasing geographical distance from South Georgia, consistent with locally restricted gene flow from South Georgia mainly to the South Shetland Islands and BouvetĂžya. The S291F allele was not detected farther afield, suggesting that although emigrants from South Georgia may have been locally important, they are unlikely to have played a major role in the recovery of geographically more distant populations.J.I.H., E.B., A.J.P., E.H., L.M.B., C.K., F.C., N.K., B.F. and A.M. were funded by Deutsche Forschungsgemeinschaft (DFG) standard grant no. (HO 5122/3-1) and this research was also partly funded by the DFG as part of the SFB TRR 212 (NC3, project A01). A.C.C., C.L., K.M.K. and A.L. were funded by projects from the Norwegian Antarctic Research Expeditions. The Department of Science and Technology of South Africa provided funding through the National Research Foundation (NRF) for Marion Island research. Support for the publication fee was provided by the DFG and the Open Access Publication Funds of Bielefeld University.http://rsos.royalsocietypublishing.orgam2019Mammal Research InstituteZoology and Entomolog

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Animal-borne telemetry: An integral component of the ocean observing toolkit

    Get PDF
    Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management

    Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation

    Get PDF
    Cholesterol plays a vital role in the human body as a precursor of steroid hormones and bile acids, in addition to providing structure to cell membranes. Whole body cholesterol metabolism is maintained by a highly coordinated balancing act between cholesterol ingestion, synthesis, absorption, and excretion. The aim of this review is to discuss how ageing interacts with these processes. Firstly, we will present an overview of cholesterol metabolism. Following this, we discuss how the biological mechanisms which underpin cholesterol metabolism are effected by ageing. Included in this discussion are lipoprotein dynamics, cholesterol absorption/synthesis and the enterohepatic circulation/synthesis of bile acids. Moreover, we discuss the role of oxidative stress in the pathological progression of atherosclerosis and also discuss how cholesterol biosynthesis is effected by both the mammalian target of rapamycin and sirtuin pathways. Next, we examine how diet and alterations to the gut microbiome can be used to mitigate the impact ageing has on cholesterol metabolism. We conclude by discussing how mathematical models of cholesterol metabolism can be used to identify therapeutic interventions

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria
    • 

    corecore