754 research outputs found

    Moral reasoning and homosexuality: the acceptability of arguments about lesbian and gay issues

    Get PDF
    In the political arena, lesbian and gay issues have typically been contested on grounds of human rights, but with variable success. Using a moral developmental framework, the purpose of this study was to explore preferences for different types of moral arguments when thinking about moral dilemmas around lesbian and gay issues. The analysis presented here comprised data collected from 545 students at UK universities, who completed a questionnaire, part of which comprised a moral dilemma task. Findings of the study showed that respondents do not apply moral reasoning consistently, and do not (clearly) favour human rights reasoning when thinking about lesbian and gay issues. Respondents tended to favour reasoning supporting existing social structures and frameworks, therefore this study highlights the importance of structural change in effecting widespread attitude change in relation to lesbian and gay rights issues. The implications of the findings for moral education are also discussed.</p

    The Formation of Cosmic Structures in a Light Gravitino Dominated Universe

    Get PDF
    We analyse the formation of cosmic structures in models where the dark matter is dominated by light gravitinos with mass of 100 100 eV -- 1 keV, as predicted by gauge-mediated supersymmetry (SUSY) breaking models. After evaluating the number of degrees of freedom at the gravitinos decoupling (g∗g_*), we compute the transfer function for matter fluctuations and show that gravitinos behave like warm dark matter (WDM) with free-streaming scale comparable to the galaxy mass scale. We consider different low-density variants of the WDM model, both with and without cosmological constant, and compare the predictions on the abundances of neutral hydrogen within high-redshift damped Ly--α\alpha systems and on the number density of local galaxy clusters with the corresponding observational constraints. We find that none of the models satisfies both constraints at the same time, unless a rather small Ω0\Omega_0 value (\mincir 0.4) and a rather large Hubble parameter (\magcir 0.9) is assumed. Furthermore, in a model with warm + hot dark matter, with hot component provided by massive neutrinos, the strong suppression of fluctuation on scales of \sim 1\hm precludes the formation of high-redshift objects, when the low--zz cluster abundance is required. We conclude that all different variants of a light gravitino DM dominated model show strong difficulties for what concerns cosmic structure formation. This gives a severe cosmological constraint on the gauge-mediated SUSY breaking scheme.Comment: 28 pages,Latex, submitted for publication to Phys.Rev.

    Primordial nucleosynthesis and hadronic decay of a massive particle with a relatively short lifetime

    Get PDF
    In this paper we consider the effects on big bang nucleosynthesis (BBN) of the hadronic decay of a long-lived massive particle. If high-energy hadrons are emitted near the BBN epoch (t∌10−2t \sim 10^{-2} -- 102sec⁥10^2 \sec), they extraordinarily inter-convert the background nucleons each other even after the freeze-out time of the neutron to proton ratio. Then, produced light element abundances are changed, and that may result in a significant discrepancy between standard BBN and observations. Especially on the theoretical side, now we can obtain a lot of experimental data of hadrons and simulate the hadronic decay process executing the numerical code of the hadron fragmentation even in the high energy region where we have no experimental data. Using the light element abundances computed in the hadron-injection scenario, we derive a constraint on properties of such a particle by comparing our theoretical results with observations.Comment: 33 pages, 14 postscript figures, reference added, typo corrected, to appear in Phys. Rev.

    Cold Nuclear Matter Effects on Dijet Productions in Relativistic Heavy-ion Reactions at LHC

    Full text link
    We investigate the cold nuclear matter(CNM) effects on dijet productions in high-energy nuclear collisions at LHC with the next-to-leading order perturbative QCD. The nuclear modifications for dijet angular distributions, dijet invariant mass spectra, dijet transverse momentum spectra and dijet momentum imbalance due to CNM effects are calculated by incorporating EPS, EKS, HKN and DS param-etrization sets of parton distributions in nucleus . It is found that dijet angular distributions and dijet momentum imbalance are insensitive to the initial-state CNM effects and thus provide optimal tools to study the final-state hot QGP effects such as jet quenching. On the other hand, the invariant mass spectra and the transverse momentum spectra of dijet are generally enhanced in a wide region of the invariant mass or transverse momentum due to CNM effects with a feature opposite to the expected suppression because of the final-state parton energy loss effect in the QGP. The difference of EPS, EKS, HKN and DS parametrization sets of nuclear parton distribution functions is appreciable for dijet invariant mass spectra and transverse momentum spectra at p+Pb collisions, and becomes more pronounced for those at Pb+Pb reactions.Comment: 10 pages, 11 figure

    Large Scale Structure Formation with Global Topological Defects. A new Formalism and its implementation by numerical simulations

    Get PDF
    We investigate cosmological structure formation seeded by topological defects which may form during a phase transition in the early universe. First we derive a partially new, local and gauge invariant system of perturbation equations to treat microwave background and dark matter fluctuations induced by topological defects or any other type of seeds. We then show that this system is well suited for numerical analysis of structure formation by applying it to seeds induced by fluctuations of a global scalar field. Our numerical results are complementary to previous investigations since we use substantially different methods. The resulting microwave background fluctuations are compatible with older simulations. We also obtain a scale invariant spectrum of fluctuations with about the same amplitude. However, our dark matter results yield a smaller bias parameter compatible with b∌2b\sim 2 on a scale of 20Mpc20 Mpc in contrast to previous work which yielded to large bias factors. Our conclusions are thus more positive. According to the aspects analyzed in this work, global topological defect induced fluctuations yield viable scenarios of structure formation and do better than standard CDM on large scales.Comment: uuencoded, compressed tar-file containing the text in LaTeX and 12 Postscript Figures, 41 page

    Possible Origin of Antimatter Regions in the Baryon Dominated Universe

    Get PDF
    We discuss the evolution of U(1) symmetric scalar field at the inflation epoch with a pseudo Nambu-Goldstone tilt revealing after the end of exponential expansion of the Universe. The U(1) symmetry is supposed to be associated with baryon charge. It is shown that quantum fluctuations lead in natural way to baryon dominated Universe with antibaryon excess regions. The range of parameters is calculated at which the fraction of Universe occupied by antimatter and the size of antimatter regions satisfy the observational constraints, survive to the modern time and lead to effects, accessible to experimental search for antimatter.Comment: 10 pages, 1 figur

    Characteristics of Cosmic Time

    Get PDF
    The nature of cosmic time is illuminated using Hamilton-Jacobi theory for general relativity. For problems of interest to cosmology, one may solve for the phase of the wavefunctional by using a line integral in superspace. Each contour of integration corresponds to a particular choice of time hypersurface, and each yields the same answer. In this way, one can construct a covariant formalism where all time hypersurfaces are treated on an equal footing. Using the method of characteristics, explicit solutions for an inflationary epoch with several scalar fields are given. The theoretical predictions of double inflation are compared with recent galaxy data and large angle microwave background anisotropies.Comment: 20 pages, RevTex using Latex 2.09, Submitted to Physical Review D Two figures included in fil

    What Shall I Do Next? Intention Mining for Flexible Process Enactment

    No full text
    International audienceBesides the benefits of flexible processes, practical implementations of process aware information systems have also revealed difficulties encountered by process participants during enactment. Several support and guidance solutions based on process mining have been proposed, but they lack a suitable semantics for human reasoning and decisions making as they mainly rely on low level activities. Applying design science, we created FlexPAISSeer, an intention mining oriented approach, with its component artifacts: 1) IntentMiner which discovers the intentional model of the executable process in an unsupervised manner; 2) In-tentRecommender which generates recommendations as intentions and confidence factors, based on the mined intentional process model and probabilistic calculus. The artifacts were evaluated in a case study with a Netherlands software company, using a Childcare system that allows flexible data-driven process enactment

    Dark Energy from structure: a status report

    Full text link
    The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein's theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (`morphon field') modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy, 59 pages, 2 figures; matches published versio

    CDMS, Supersymmetry and Extra Dimensions

    Get PDF
    The CDMS experiment aims to directly detect massive, cold dark matter particles originating from the Milky Way halo. Charge and lattice excitations are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK, allowing to separate nuclear recoils from the dominating electromagnetic background. The operation of 12 detectors in the Soudan mine for 75 live days in 2004 delivered no evidence for a signal, yielding stringent limits on dark matter candidates from supersymmetry and universal extra dimensions. Thirty Ge and Si detectors are presently installed in the Soudan cryostat, and operating at base temperature. The run scheduled to start in 2006 is expected to yield a one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on sources and detection of dark matter and dark energy in the universe, Marina del Rey, Feb 22-24, 200
    • 

    corecore