28 research outputs found

    Transverse momentum spectra of charged particles in proton-proton collisions at s=900\sqrt{s} = 900 GeV with ALICE at the LHC

    Get PDF
    The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at s=900\sqrt{s} = 900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (η<0.8)(|\eta|<0.8) over the transverse momentum range 0.15<pT<100.15<p_{\rm T}<10 GeV/cc. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for η<0.8|\eta|<0.8 is <pT>INEL=0.483±0.001\left<p_{\rm T}\right>_{\rm INEL}=0.483\pm0.001 (stat.) ±0.007\pm0.007 (syst.) GeV/cc and \left_{\rm NSD}=0.489\pm0.001 (stat.) ±0.007\pm0.007 (syst.) GeV/cc, respectively. The data exhibit a slightly larger <pT>\left<p_{\rm T}\right> than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.Comment: 20 pages, 8 figures, 2 tables, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/390

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism

    Alternating hemiplegia of childhood or familial hemiplegic migraine?: A novel ATP1A2 mutation

    No full text
    Alternating hemiplegia of childhood (AHC) is typically distinguished from familial hemiplegic migraine (FHM) by infantile onset of the characteristic symptoms and high prevalence of associated neurological deficits that become increasingly obvious with age. Expansion of the clinical spectrum in FHM recently has begun to blur the distinction between these disorders. We report a novel ATP1A2 mutation in a kindred with features that bridge the phenotypic spectrum between AHC and FHM syndromes, supporting a possible common pathogenesis in a subset of such cases. Mutation analysis in classic sporadic AHC patients and in an additional five kindreds in which linkage to the A TP1A2 locus could not be excluded failed to identify additional mutations

    Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy

    No full text
    Muscle contraction results from the force generated between the thin filament protein actin and the thick filament protein myosin, which causes the thick and thin muscle filaments to slide past each other. There are skeletal muscle, cardiac muscle, smooth muscle and non-muscle isoforms of both actin and myosin. Inherited diseases in humans have been associated with defects in cardiac actin (dilated cardiomyopathy and hypertrophic cardiomyopathy), cardiac myosin (hypertrophic cardiomyopathy) and non-muscle myosin (deafness). Here we report that mutations in the human skeletal muscle α-actin gene (ACTA1) are associated with two different muscle diseases, 'congenital myopathy with excess of thin myofilaments' (actin myopathy) and nemaline myopathy. Both diseases are characterized by structural abnormalities of the muscle fibres and variable degrees of muscle weakness. We have identified 15 different missense mutations resulting in 14 different amino acid changes. The missense mutations in ACTA1 are distributed throughout all six coding exons, and some involve known functional domains of actin. Approximately half of the patients died within their first year, but two female patients have survived into their thirties and have children. We identified dominant mutations in all but 1 of 14 families, with the missense mutations being single and heterozygous. The only family showing dominant inheritance comprised a 33-year-old affected mother and her two affected and two unaffected children. In another family, the clinically unaffected father is a somatic mosaic for the mutation seen in both of his affected children. We identified recessive mutations in one family in which the two affected siblings had heterozygous mutations in two different exons, one paternally and the other maternally inherited. We also identified de novo mutations in seven sporadic probands for which it was possible to analyse parental DNA

    Attosecond excitation of electron wavepackets2008 Conference on Lasers and Electro-Optics

    No full text
    We present experiments, supported by time-dependent Schrödinger simulations, on the dynamics of Helium bound states after an attosecond excitation in the presence of a strong infrared laser field

    Ribozymes: Analytical Solution of the One-substrate, Two-intermediate Reversible Scheme for Enzyme Reactions

    No full text
    The paper presents a kinetic analysis of a reversible enzymatic reaction S⇄P involving two intermediate compounds under the condition [E]0 ≫ [S]0 + [P]0. For the case of mono-exponential behavior, we derive an equation for kobs as a function of [E]0, which emphasizes the pitfalls of oversimplifying kinetic schemes (such as the Michaelis-Menten model) for ribozyme studies. This novel apparent rate constant, which has been arrived at through mechanistic considerations, is analyzed, and the characteristic parameters obtained. The equation, which seems to fit experimental data better than conventional approximations, is used to analyze a single turnover study on an ADC1 ribozyme drawn from hepatitis delta virus RNA. The microscopic kinetic constants for such enzyme are evaluated and its mono-exponential behavior verified
    corecore