55 research outputs found

    Overview of the JET results in support to ITER

    Get PDF

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    University of Sussex and David Yellin Teachers' College, Israel

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:f99/1325 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Magnetic resonance imaging (MRI): a technique to study flow an microstructure of concentrated emulsions

    Get PDF
    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) have recently been recognized as important techniques for R&D of products and processes, as is attested by several successful applications in different areas of chemical engineering in recent years. In this article we present new experimental methods based on MRI to study flow and microstructure of concentrated emulsions. The objective is to present the unique features of this noninvasive technique to accurately measure different properties of flowing particulate opaque systems. Experimental results of velocity profiles, spatial distribution of droplet sizes and spatial homogeneity of an oil-in-water dispersion in a horizontal, concentric cylinder geometry using different pulse sequences are presented. The application of these techniques allowed probing important information on flow and microstructure of multiphase systems of interest in chemical engineering and food science
    corecore