379 research outputs found

    Transition from exponential to linear photoautotrophic growth changes the physiology of <em>Synechocystis</em> sp. PCC 6803

    Get PDF
    Phototrophic microorganisms like cyanobacteria show growth curves in batch culture that differ from the corresponding growth curves of chemotrophic bacteria. Instead of the usual three phases, i.e., lag-, log-, and stationary phase, phototrophs display four distinct phases. The extra growth phase is a phase of linear, light-limited growth that follows the exponential phase and is often ignored as being different. Results of this study demonstrate marked growth phase-dependent alterations in the photophysiology of the cyanobacterium Synechocystis sp. PCC 6803 between cells harvested from the exponential and the linear growth phase. Notable differences are a gradual shift in the energy transfer of the light-harvesting phycobilisomes to the photosystems and a distinct change in the redox state of the plastoquinone pool. These differences will likely affect the result of physiological studies and the efficiency of product formation of Synechocystis in biotechnological applications. Our study also demonstrates that the length of the period of exponential growth can be extended by a gradually stronger incident light intensity that matches the increase of the cell density of the culture

    Ethylene production with engineered<i> Synechocystis</i> sp PCC 6803 strains

    Get PDF
    BACKGROUND: Metabolic engineering and synthetic biology of cyanobacteria offer a promising sustainable alternative approach for fossil-based ethylene production, by using sunlight via oxygenic photosynthesis, to convert carbon dioxide directly into ethylene. Towards this, both well-studied cyanobacteria, i.e., Synechocystis sp PCC 6803 and Synechococcus elongatus PCC 7942, have been engineered to produce ethylene by introducing the ethylene-forming enzyme (Efe) from Pseudomonas syringae pv. phaseolicola PK2 (the Kudzu strain), which catalyzes the conversion of the ubiquitous tricarboxylic acid cycle intermediate 2-oxoglutarate into ethylene. RESULTS: This study focuses on Synechocystis sp PCC 6803 and shows stable ethylene production through the integration of a codon-optimized version of the efe gene under control of the Ptrc promoter and the core Shine–Dalgarno sequence (5′-AGGAGG-3′) as the ribosome-binding site (RBS), at the slr0168 neutral site. We have increased ethylene production twofold by RBS screening and further investigated improving ethylene production from a single gene copy of efe, using multiple tandem promoters and by putting our best construct on an RSF1010-based broad-host-self-replicating plasmid, which has a higher copy number than the genome. Moreover, to raise the intracellular amounts of the key Efe substrate, 2-oxoglutarate, from which ethylene is formed, we constructed a glycogen-synthesis knockout mutant (ΔglgC) and introduced the ethylene biosynthetic pathway in it. Under nitrogen limiting conditions, the glycogen knockout strain has increased intracellular 2-oxoglutarate levels; however, surprisingly, ethylene production was lower in this strain than in the wild-type background. CONCLUSION: Making use of different RBS sequences, production of ethylene ranging over a 20-fold difference has been achieved. However, a further increase of production through multiple tandem promoters and a broad-host plasmid was not achieved speculating that the transcription strength and the gene copy number are not the limiting factors in our system

    Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein

    Get PDF
    AbstractAnalysis of the chromophore p-courmaix acid, extracted from the ground state and the long-lived blue-shifted photocycle intermediate of photoactive yellow protein, shows that the chromophore is reversibly converted from the trans to the cis configuration, while progressing through the photocycle. The detection of the trans and cis isomers was carried out by high performance capillary zone electrophoresis and further substained by 1H NMR spectroscopy. The data presented here establish the photo-isomerization of the vinyl double bond in the chromophore yellow protein, a eubacterial photosensory protein. A similar isomerization process occurs in the structurally very different sensory rhodopsins, offering an explanation for the strong spectroscopic similarities between photoactive yellow protein and the sensory rhodopsins. This is the first demonstration of light-induced isomerization of a chromophore double bond as the photochemical basis for photosensing in the domain of Bacteria
    • …
    corecore