1 research outputs found

    Instabilities in the Flux Line Lattice of Anisotropic Superconductors

    Full text link
    The stability of the flux line lattice has been investigated within anisotropic London theory. This is the first full-scale investigation of instabilities in the `chain' state. It has been found that the lattice is stable at large fields, but that instabilities occur as the field is reduced. The field at which these instabilities first arise, b∗(ϵ,θ)b^*(\epsilon,\theta), depends on the anisotropy ϵ\epsilon and the angle θ\theta at which the lattice is tilted away from the cc-axis. These instabilities initially occur at wavevector k∗(ϵ,θ)k^*(\epsilon,\theta), and the component of k∗k^* along the average direction of the flux lines, kzk_z, is always finite. As the instability occurs at finite kzk_z the dependence of the cutoff on kzk_z is important, and we have used a cutoff suggested by Sudb\ospace and Brandt. The instabilities only occur for values of the anisotropy ϵ\epsilon appropriate to a material like BSCCO, and not for anisotropies more appropriate to YBCO. The lower critical field Hc1(ϕ)H_{c_1}(\phi) is calculated as a function of the angle ϕ\phi at which the applied field is tilted away from the crystal axis. The presence of kinks in Hc1(ϕ)H_{c_1}(\phi) is seen to be related to instabilities in the equilibrium flux line structure.Comment: Extensively revised paper, with modified analysis of elastic instabilities. Calculation of the lower critical field is included, and the presence of kinks in Hc1H_{c_1} is seen to be related to the elastic instabilities. 29 pages including 16 figures, LaTeX with epsf styl
    corecore