7 research outputs found

    On relativistic elements of reality

    Full text link
    Several arguments have been proposed some years ago, attempting to prove the impossibility of defining Lorentz-invariant elements of reality. I find that a sufficient condition for the existence of elements of reality, introduced in these proofs, seems to be used also as a necessary condition. I argue that Lorentz-invariant elements of reality can be defined but, as Vaidman pointed out, they won't satisfy the so-called product rule. In so doing I obtain algebraic constraints on elements of reality associated with a maximal set of commuting Hermitian operators.Comment: Clarifications, reference added; published versio

    The Possibilist Transactional Interpretation and Relativity

    Full text link
    A recent ontological variant of Cramer's Transactional Interpretation, called "Possibilist Transactional Interpretation" or PTI, is extended to the relativistic domain. The present interpretation clarifies the concept of 'absorption,' which plays a crucial role in TI (and in PTI). In particular, in the relativistic domain, coupling amplitudes between fields are interpreted as amplitudes for the generation of confirmation waves (CW) by a potential absorber in response to offer waves (OW), whereas in the nonrelativistic context CW are taken as generated with certainty. It is pointed out that solving the measurement problem requires venturing into the relativistic domain in which emissions and absorptions take place; nonrelativistic quantum mechanics only applies to quanta considered as 'already in existence' (i.e., 'free quanta'), and therefore cannot fully account for the phenomenon of measurement, in which quanta are tied to sources and sinks.Comment: Final version with some minor corrections as published in Foundations of Physics. This paper has significant overlap with Chapter 6 of my book on the Transactional Interpretation, forthcoming from Cambridge University Press: http://www.cambridge.org/us/knowledge/isbn/item6860644/?site_locale=en_US (Additional preview material is available at rekastner.wordpress.com) Comments welcom

    Overconfidence and trading volume

    No full text
    Theoretical models predict that overconfident investors will trade more than rational investors. We directly test this hypothesis by correlating individual overconfidence scores with several measures of trading volume of individual investors. Approximately 3,000 online broker investors were asked to answer an internet questionnaire which was designed to measure various facets of overconfidence (miscalibration, volatility estimates, better than average effect). The measures of trading volume were calculated by the trades of 215 individual investors who answered the questionnaire. We find that investors who think that they are above average in terms of investment skills or past performance (but who did not have above average performance in the past) trade more. Measures of miscalibration are, contrary to theory, unrelated to measures of trading volume. This result is striking as theoretical models that incorporate overconfident investors mainly motivate this assumption by the calibration literature and model overconfidence as underestimation of the variance of signals. In connection with other recent findings, we conclude that the usual way of motivating and modeling overconfidence which is mainly based on the calibration literature has to be treated with caution. Moreover, our way of empirically evaluating behavioral finance models—the correlation of economic and psychological variables and the combination of psychometric measures of judgment biases (such as overconfidence scores) and field data—seems to be a promising way to better understand which psychological phenomena actually drive economic behavior. Copyright The Geneva Association 2007Overconfidence, Differences of opinion, Trading volume, Individual investors, Investor behavior, Correlation of economic and psychological variables, Combination of psychometric measures of judgment biases and field data, D8, G1,
    corecore