49 research outputs found
Density of states and magnetoconductance of disordered Au point contacts
We report the first low temperature magnetotransport measurements on
electrochemically fabricated atomic scale gold nanojunctions. As , the
junctions exhibit nonperturbatively large zero bias anomalies (ZBAs) in their
differential conductance. We consider several explanations and find that the
ZBAs are consistent with a reduced local density of states (LDOS) in the
disordered metal. We suggest that this is a result of Coulomb interactions in a
granular metal with moderate intergrain coupling. Magnetoconductance of atomic
scale junctions also differs significantly from that of less geometrically
constrained devices, and supports this explanation.Comment: 5 pages, 5 figures. Accepted to PRB as Brief Repor
Raman coupler for a trapped two-component quantum-degenerate Fermi gas
We investigate theoretically the Raman coupling between two internal states
of a trapped low-density quantum-degenerate Fermi gas. In general, the trap
frequencies associated with the two internal states can be different, leading
to the onset of collapses and revivals in the population difference of the two
internal states. This behavior can be changed drastically by two-body
collisions. In particular, we show that under appropriate conditions they can
suppress the dephasing leading to the collapse of the population difference,
and restore almost full Rabi oscillations between the two internal states.
These results are compared and contrasted to those for a quantum-degenerate
bosonic gas.Comment: 7 pages incl. 7 PostScript figures (.eps), LaTeX using RevTeX4,
submitted to Phys. Rev. A, modified versio
On the multiplicity of the O-star Cyg OB2 #8A and its contribution to the gamma-ray source 3EG J2033+4118
We present the results of an intensive spectroscopic campaign in the optical
waveband revealing that Cyg OB2 #8A is an O6 + O5.5 binary system with a period
of about 21.9 d. Cyg OB2 #8A is a bright X-ray source, as well as a non-thermal
radio emitter. We discuss the binarity of this star in the framework of a
campaign devoted to the study of non-thermal emitters, from the radio waveband
to gamma-rays. In this context, we attribute the non-thermal radio emission
from this star to a population of relativistic electrons, accelerated by the
shock of the wind-wind collision. These relativistic electrons could also be
responsible for a putative gamma-ray emission through inverse Compton
scattering of photospheric UV photons, thus contributing to the yet
unidentified EGRET source 3EG J2033+4118.Comment: 8 pages, 4 figures, conference on "The Multiwavelength Approach to
Gamma-Ray Sources", to appear in Ap&S
2-loop Functional Renormalization Group Theory of the Depinning Transition
We construct the field theory which describes the universal properties of the
quasi-static isotropic depinning transition for interfaces and elastic periodic
systems at zero temperature, taking properly into account the non-analytic form
of the dynamical action. This cures the inability of the 1-loop flow-equations
to distinguish between statics and quasi-static depinning, and thus to account
for the irreversibility of the latter. We prove two-loop renormalizability,
obtain the 2-loop beta-function and show the generation of "irreversible"
anomalous terms, originating from the non-analytic nature of the theory, which
cause the statics and driven dynamics to differ at 2-loop order. We obtain the
roughness exponent zeta and dynamical exponent z to order epsilon^2. This
allows to test several previous conjectures made on the basis of the 1-loop
result. First it demonstrates that random-field disorder does indeed attract
all disorder of shorter range. It also shows that the conjecture zeta=epsilon/3
is incorrect, and allows to compute the violations, as zeta=epsilon/3 (1 +
0.14331 epsilon), epsilon=4-d. This solves a longstanding discrepancy with
simulations. For long-range elasticity it yields zeta=epsilon/3 (1 + 0.39735
epsilon), epsilon=2-d (vs. the standard prediction zeta=1/3 for d=1), in
reasonable agreement with the most recent simulations. The high value of zeta
approximately 0.5 found in experiments both on the contact line depinning of
liquid Helium and on slow crack fronts is discussed.Comment: 32 pages, 17 figures, revtex
Local linear regression with adaptive orthogonal fitting for the wind power application
Short-term forecasting of wind generation requires a model of the function for the conversion of me-teorological variables (mainly wind speed) to power production. Such a power curve is nonlinear and bounded, in addition to being nonstationary. Local linear regression is an appealing nonparametric ap-proach for power curve estimation, for which the model coefficients can be tracked with recursive Least Squares (LS) methods. This may lead to an inaccurate estimate of the true power curve, owing to the assumption that a noise component is present on the response variable axis only. Therefore, this assump-tion is relaxed here, by describing a local linear regression with orthogonal fit. Local linear coefficients are defined as those which minimize a weighted Total Least Squares (TLS) criterion. An adaptive es-timation method is introduced in order to accommodate nonstationarity. This has the additional benefit of lowering the computational costs of updating local coefficients every time new observations become available. The estimation method is based on tracking the left-most eigenvector of the augmented covari-ance matrix. A robustification of the estimation method is also proposed. Simulations on semi-artificial datasets (for which the true power curve is available) underline the properties of the proposed regression and related estimation methods. An important result is the significantly higher ability of local polynomia
Isomorphisms of types in the presence of higher-order references (extended version)
We investigate the problem of type isomorphisms in the presence of
higher-order references. We first introduce a finitary programming language
with sum types and higher-order references, for which we build a fully abstract
games model following the work of Abramsky, Honda and McCusker. Solving an open
problem by Laurent, we show that two finitely branching arenas are isomorphic
if and only if they are geometrically the same, up to renaming of moves
(Laurent's forest isomorphism). We deduce from this an equational theory
characterizing isomorphisms of types in our language. We show however that
Laurent's conjecture does not hold on infinitely branching arenas, yielding new
non-trivial type isomorphisms in a variant of our language with natural
numbers
Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits
The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Throug
Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk
Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk
BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7Ă—10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4Ă—10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4Ă—10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat