2 research outputs found

    ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½ΠΎΠ²ΠΎΠΊ основанного Π½Π° ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΈ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° ΠΎΡ€Ρ‚ΠΎ-сув для ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ слоТных Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ срСднСго ΠΈ Π·Π°Π΄Π½Π΅Π³ΠΎ ΠΎΡ‚Π΄Π΅Π»ΠΎΠ² стопы

    Get PDF
    Aim: to find the optimal configuration of passive computer-assisted ORTO-SUV device for the correction of complicated midfoot and hindfoot deformities. Material and methods: The study was carried out using plastic β€œshin-foot”complexes, on which different versions of Orto-SUV device layout: five versions for midfoot deformities and three versions for hindfoot deformities. A model providing maximum amplitude of the movement was considered optimal. Results: Optimal layout for midfoot provides dorsiflexion of 41,1Β±1,7Β°; plantar flexion - 32,1Β±1,4Β°; supination - 53,3Β±1,8Β°; pronation - 35Β±1,6Β°; abduction - 44,2Β±2,1Β°; adduction - 43,2Β±1,7Β°. Optimal layout for the correction of hindfoot deformities provides rotation in sagittal plane upwards - 96,5Β±2,4Β°;rotation in sagittal plane downwards - 36,2Β±1,4Β°;β€œvarusation” (angulationmedially in the frontal plane) - 31Β±1,3Β°; β€œvalgusation” (in the frontal plane outwards) - 44,5Β±1,9Β°; movement upwards and backwards, angle of 45Β° to the horizontal plane - 86,4Β±1,2 mm; movement downwards and anteriorly, angle of 45Β° to the horizontal plane - 81,5Β±1,1 mm.ЦСль - ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½ΠΎΠ²ΠΎΠΊ основанного Π½Π° пассивной ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΈ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° ΠžΡ€Ρ‚ΠΎ-Π‘Π£Π’ для ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ слоТных Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ срСднСго ΠΈ Π·Π°Π΄Π½Π΅Π³ΠΎ ΠΎΡ‚Π΄Π΅Π»ΠΎΠ² стопы. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИсслСдованиС ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ с использованиСм пластиковых комплСксов «голСнь - стопа», Π½Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ ΠΊΠΎΠΌΠΏΠΎΠ½ΠΎΠ²ΠΎΠΊ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° ΠžΡ€Ρ‚ΠΎ-Π‘Π£Π’: ΠΏΡΡ‚ΡŒ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² для Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ срСднСго ΠΎΡ‚Π΄Π΅Π»Π° ΠΈ Ρ‚Ρ€ΠΈ - для Π·Π°Π΄Π½Π΅Π³ΠΎ ΠΎΡ‚Π΄Π΅Π»Π° стопы. МодСль, которая обСспСчивала Π½Π°ΠΈΠ±ΠΎΠ»ΡŒΡˆΡƒΡŽ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρƒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ, ΠΏΡ€ΠΈΠ·Π½Π°Π²Π°Π»Π°ΡΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠžΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΌΠΏΠΎΠ½ΠΎΠ²ΠΊΠ° для срСднСго ΠΎΡ‚Π΄Π΅Π»Π° стопы обСспСчиваСт Ρ‚Ρ‹Π»ΡŒΠ½ΠΎΠ΅ сгибаниС - 41,1Β±1,7Β°; подошвСнноС сгибаниС - 32,1Β±1,4Β°; ΡΡƒΠΏΠΈΠ½Π°Ρ†ΠΈΡŽ - 53,3Β±1,8Β°; ΠΏΡ€ΠΎΠ½Π°Ρ†ΠΈΡŽ - 35Β±1,6Β°; ΠΎΡ‚Π²Π΅Π΄Π΅Π½ΠΈΠ΅ - 44,2Β±2,1Β°; ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ - 43,2Β±1,7Β°. ΠžΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΌΠΏΠΎΠ½ΠΎΠ²ΠΊΠ° для ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ Π·Π°Π΄Π½Π΅Π³ΠΎ ΠΎΡ‚Π΄Π΅Π»Π° стопы обСспСчиваСт Ρ€ΠΎΡ‚Π°Ρ†ΠΈΡŽ Π² ΡΠ°Π³ΠΈΡ‚Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ плоскости Π²Π²Π΅Ρ€Ρ… - 96,5Β±2,4Β°; Ρ€ΠΎΡ‚Π°Ρ†ΠΈΡŽ Π² ΡΠ°Π³ΠΈΡ‚Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ плоскости Π²Π½ΠΈΠ· - 36,2Β±1,4Β°; Π²Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡŽ (Π°Π½Π³ΡƒΠ»ΡΡ†ΠΈΡŽ Π²ΠΎ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ плоскости ΠΊΠ½ΡƒΡ‚Ρ€ΠΈ) - 31Β±1,3Β°; Π²Π°Π»ΡŒΠ³ΠΈΠ·Π°Ρ†ΠΈΡŽ (Π°Π½Π³ΡƒΠ»ΡΡ†ΠΈΡŽ Π²ΠΎ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ плоскости ΠΊΠ½Π°Ρ€ΡƒΠΆΠΈ) - 44,5Β±1,9Β°; ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΊΠ²Π΅Ρ€Ρ…Ρƒ ΠΈ Π½Π°Π·Π°Π΄, ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 45Β° ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ плоскости - 86,4Β±1,2 ΠΌΠΌ; ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π²Π½ΠΈΠ· ΠΈ ΠΊΠΏΠ΅Ρ€Π΅Π΄ΠΈ, ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 45Β° ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ плоскости - 81,5Β±1,1 ΠΌΠΌ

    EFFECT OF MACROPLASTIC ON SOIL INVERTEBRATES: A CASE STUDY USING MORPHOLOGICAL AND MOLECULAR APPROACHES

    No full text
    Soil contamination by plastic is a global problem. Most experimental studies focus on microplastics, but large fragments, such as a variety of packaging and plastic bags, make up a significant component of plastic pollution. The effects of large fragments of household plastic debris on soil invertebrate communities are largely unexplored. The use of metabarcoding can greatly simplify the assessment of the taxonomic composition of soil invertebrates as well as their symbionts and parasites. However, the method is still underdeveloped and requires verification by classical approaches. We used metabarcoding and the traditional approach based on the morphological identification of invertebrates in assessing the effect of macroplastics on soil animal communities. Fragments of transparent or black polyethylene film measuring 40 Γ— 40 cm were fixed on the soil surface in four forest ecosystems. After 9 months, the total abundance of mesofauna in general and individual groups of invertebrates (Collembola, Mesostigmata) was significantly reduced in the soil under the film compared to the control plots. The presence of the film did not affect the abundance of macrofauna, but in some biotopes the abundance of Isopoda, Hemiptera and Chilopoda increased and the number of Coleoptera and Diptera larvae decreased under the plastic film. The applied modification of metabarcoding revealed a significantly lower diversity of invertebrates (66 families, 105 genera) compared to the morphological method of identification (95 families, 127 genera). Wolbachia and Rickettsia, typical endosymbionts of invertebrates, but not other common parasites, were noted. In contrast to the morphological method of determination, metabarcoding revealed no significant differences in the taxonomic composition of invertebrates in the soil under the film and in the control soil. However, the significant correlation between the results of morphological identification and metabarcoding confirms the ability of metabarcoding to detect even small changes in the taxonomic composition of soil invertebrate communities
    corecore