203 research outputs found
Fractional plateaus in the Coulomb blockade of coupled quantum dots
Ground-state properties of a double-large-dot sample connected to a reservoir
via a single-mode point contact are investigated. When the interdot
transmission is perfect and the dots controlled by the same dimensionless gate
voltage, we find that for any finite backscattering from the barrier between
the lead and the left dot, the average dot charge exhibits a Coulomb-staircase
behavior with steps of size e/2 and the capacitance peak period is halved. The
interdot electrostatic coupling here is weak. For strong tunneling between the
left dot and the lead, we report a conspicuous intermediate phase in which the
fractional plateaus get substantially altered by an increasing slope.Comment: 6 pages, 4 figures, final versio
Resonant tunneling and the multichannel Kondo problem: the quantum Brownian motion description
We study mesoscopic resonant tunneling as well as multichannel Kondo problems
by mapping them to a first-quantized quantum mechanical model of a particle
moving in a multi-dimensional periodic potential with Ohmic dissipation. From a
renormalization group analysis, we obtain phase diagrams of the quantum
Brownian motion model with various lattice symmetries. For a symmorphic
lattice, there are two phases at T=0: a localized phase in which the particle
is trapped in a potential minimum, and a free phase in which the particle is
unaffected by the periodic potential. For a non-symmorphic lattice, however,
there may be an additional intermediate phase in which the particle is neither
localized nor completely free. The fixed point governing the intermediate phase
is shown to be identical to the well-known multichannel Kondo fixed point in
the Toulouse limit as well as the resonance fixed point of a quantum dot model
and a double-barrier Luttinger liquid model. The mapping allows us to compute
the fixed-poing mobility of the quantum Brownian motion model exactly,
using known conformal-field-theory results of the Kondo problem. From the
mobility, we find that the peak value of the conductance resonance of a
spin-1/2 quantum dot problem is given by . The scaling form of the
resonance line shape is predicted
Smearing of charge fluctuations in a grain by spin-flip assisted tunneling
We investigate the charge fluctuations of a grain (large dot) coupled to a
lead via a small quantum dot in the Kondo regime. We show that the strong
entanglement of charge and spin flips in this setup can result in a stable
SU(4) Kondo fixed point, which considerably smears out the Coulomb staircase
behavior already in the weak tunneling limit. This behavior is robust enough to
be experimentally observable.Comment: 4 pages, 1 figure, final version for PRB Rapid Com
Temporal Network Optimization Subject to Connectivity Constraints
In this work we consider temporal networks, i.e. networks defined by a labeling λ assigning to each edge of an underlying graph G a set of discrete time-labels. The labels of an edge, which are natural numbers, indicate the discrete time moments at which the edge is available. We focus on path problems of temporal networks. In particular, we consider time-respecting paths, i.e. paths whose edges are assigned by λ a strictly increasing sequence of labels. We begin by giving two efficient algorithms for computing shortest time-respecting paths on a temporal network. We then prove that there is a natural analogue of Menger’s theorem holding for arbitrary temporal networks. Finally, we propose two cost minimization parameters for temporal network design. One is the temporality of G, in which the goal is to minimize the maximum number of labels of an edge, and the other is the temporal cost of G, in which the goal is to minimize the total number of labels used. Optimization of these parameters is performed subject to some connectivity constraint. We prove several lower and upper bounds for the temporality and the temporal cost of some very basic graph families such as rings, directed acyclic graphs, and trees
Enhancement of the Two-channel Kondo Effect in Single-Electron boxes
The charging of a quantum box, coupled to a lead by tunneling through a
single resonant level, is studied near the degeneracy points of the Coulomb
blockade. Combining Wilson's numerical renormalization-group method with
perturbative scaling approaches, the corresponding low-energy Hamiltonian is
solved for arbitrary temperatures, gate voltages, tunneling rates, and energies
of the impurity level. Similar to the case of a weak tunnel barrier, the shape
of the charge step is governed at low temperatures by the non-Fermi-liquid
fixed point of the two-channel Kondo effect. However, the associated Kondo
temperature TK is strongly modified. Most notably, TK is proportional to the
width of the level if the transmission through the impurity is close to unity
at the Fermi energy, and is no longer exponentially small in one over the
tunneling matrix element. Focusing on a particle-hole symmetric level, the
two-channel Kondo effect is found to be robust against the inclusion of an
on-site repulsion on the level. For a large on-site repulsion and a large
asymmetry in the tunneling rates to box and to the lead, there is a sequence of
Kondo effects: first the local magnetic moment that forms on the level
undergoes single-channel screening, followed by two-channel overscreening of
the charge fluctuations inside the box.Comment: 21 pages, 19 figure
Accelerated expansion from braneworld models with variable vacuum energy
In braneworld models a variable vacuum energy may appear if the size of the
extra dimension changes during the evolution of the universe. In this scenario
the acceleration of the universe is related not only to the variation of the
cosmological term, but also to the time evolution of and, possibly, to the
variation of other fundamental "constants" as well. This is because the
expansion rate of the extra dimension appears in different contexts, notably in
expressions concerning the variation of rest mass and electric charge. We
concentrate our attention on spatially-flat, homogeneous and isotropic,
brane-universes where the matter density decreases as an inverse power of the
scale factor, similar (but at different rate) to the power law in FRW-universes
of general relativity.
We show that these braneworld cosmologies are consistent with the observed
accelerating universe and other observational requirements. In particular,
becomes constant and asymptotically in
time. Another important feature is that the models contain no "adjustable"
parameters. All the quantities, even the five-dimensional ones, can be
evaluated by means of measurements in 4D. We provide precise constrains on the
cosmological parameters and demonstrate that the "effective" equation of state
of the universe can, in principle, be determined by measurements of the
deceleration parameter alone. We give an explicit expression relating the
density parameters , and the deceleration
parameter . These results constitute concrete predictions that may help in
observations for an experimental/observational test of the model.Comment: References added, typos correcte
Radiative Decay of a Long-Lived Particle and Big-Bang Nucleosynthesis
The effects of radiatively decaying, long-lived particles on big-bang
nucleosynthesis (BBN) are discussed. If high-energy photons are emitted after
BBN, they may change the abundances of the light elements through
photodissociation processes, which may result in a significant discrepancy
between the BBN theory and observation. We calculate the abundances of the
light elements, including the effects of photodissociation induced by a
radiatively decaying particle, but neglecting the hadronic branching ratio.
Using these calculated abundances, we derive a constraint on such particles by
comparing our theoretical results with observations. Taking into account the
recent controversies regarding the observations of the light-element
abundances, we derive constraints for various combinations of the measurements.
We also discuss several models which predict such radiatively decaying
particles, and we derive constraints on such models.Comment: Published version in Phys. Rev. D. Typos in figure captions correcte
On the Treewidth of Dynamic Graphs
Dynamic graph theory is a novel, growing area that deals with graphs that
change over time and is of great utility in modelling modern wireless, mobile
and dynamic environments. As a graph evolves, possibly arbitrarily, it is
challenging to identify the graph properties that can be preserved over time
and understand their respective computability.
In this paper we are concerned with the treewidth of dynamic graphs. We focus
on metatheorems, which allow the generation of a series of results based on
general properties of classes of structures. In graph theory two major
metatheorems on treewidth provide complexity classifications by employing
structural graph measures and finite model theory. Courcelle's Theorem gives a
general tractability result for problems expressible in monadic second order
logic on graphs of bounded treewidth, and Frick & Grohe demonstrate a similar
result for first order logic and graphs of bounded local treewidth.
We extend these theorems by showing that dynamic graphs of bounded (local)
treewidth where the length of time over which the graph evolves and is observed
is finite and bounded can be modelled in such a way that the (local) treewidth
of the underlying graph is maintained. We show the application of these results
to problems in dynamic graph theory and dynamic extensions to static problems.
In addition we demonstrate that certain widely used dynamic graph classes
naturally have bounded local treewidth
Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models
Both community ecology and conservation biology seek further understanding of
factors governing the advance of an invasive species. We model biological
invasion as an individual-based, stochastic process on a two-dimensional
landscape. An ecologically superior invader and a resident species compete for
space preemptively. Our general model includes the basic contact process and a
variant of the Eden model as special cases. We employ the concept of a
"roughened" front to quantify effects of discreteness and stochasticity on
invasion; we emphasize the probability distribution of the front-runner's
relative position. That is, we analyze the location of the most advanced
invader as the extreme deviation about the front's mean position. We find that
a class of models with different assumptions about neighborhood interactions
exhibit universal characteristics. That is, key features of the invasion
dynamics span a class of models, independently of locally detailed demographic
rules. Our results integrate theories of invasive spatial growth and generate
novel hypotheses linking habitat or landscape size (length of the invading
front) to invasion velocity, and to the relative position of the most advanced
invader.Comment: The original publication is available at
www.springerlink.com/content/8528v8563r7u2742
Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab
We present measurements of the differential cross section and Lambda recoil
polarization for the gamma p to K+ Lambda reaction made using the CLAS detector
at Jefferson Lab. These measurements cover the center-of-mass energy range from
1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles.
Independent analyses were performed using the K+ p pi- and K+ p (missing pi -)
final-state topologies; results from these analyses were found to exhibit good
agreement. These differential cross section measurements show excellent
agreement with previous CLAS and LEPS results and offer increased precision and
a 300 MeV increase in energy coverage. The recoil polarization data agree well
with previous results and offer a large increase in precision and a 500 MeV
extension in energy range. The increased center-of-mass energy range that these
data represent will allow for independent study of non-resonant K+ Lambda
photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure
- …