18,834 research outputs found

    Surface segregation and the Al problem in GaAs quantum wells

    Full text link
    Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped Alx_xGa1x_{1-x}As/GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the Alx_xGa1x_{1-x}As barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the Alx_xGa1x_{1-x}As barrier beneath the QW is increased, which we attribute to the surface segregation of Oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking

    Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum Hall bilayers

    Full text link
    The effect of tunneling on the transport properties of} quantum Hall double layers in the regime of the excitonic condensate at total filling factor one is studied in counterflow experiments. If the tunnel current II is smaller than a critical ICI_C, tunneling is large and is effectively shorting the two layers. For I>ICI > I_C tunneling becomes negligible. Surprisingly, the transition between the two tunneling regimes has only a minor impact on the features of the filling-factor one state as observed in magneto-transport, but at currents exceeding ICI_C the resistance along the layers increases rapidly

    Impact of reionization on CMB polarization tests of slow-roll inflation

    Full text link
    Estimates of inflationary parameters from the CMB B-mode polarization spectrum on the largest scales depend on knowledge of the reionization history, especially at low tensor-to-scalar ratio. Assuming an incorrect reionization history in the analysis of such polarization data can strongly bias the inflationary parameters. One consequence is that the single-field slow-roll consistency relation between the tensor-to-scalar ratio and tensor tilt might be excluded with high significance even if this relation holds in reality. We explain the origin of the bias and present case studies with various tensor amplitudes and noise characteristics. A more model-independent approach can account for uncertainties about reionization, and we show that parametrizing the reionization history by a set of its principal components with respect to E-mode polarization removes the bias in inflationary parameter measurement with little degradation in precision.Comment: 9 pages, 6 figures; submitted to Phys. Rev.

    Production of Neutral Fermion in Linear Magnetic Field through Pauli Interaction

    Full text link
    We calculate the production rate of neutral fermions in linear magnetic fields through the Pauli interaction. It is found that the production rate is exponentially decreasing function with respect to the inverse of the magnetic field gradient, which shows the non-perturbative characteristics analogous to the Schwinger process. It turns out that the production rate density depends on both the gradient and the strength of magnetic fields in 3+1 dimension. It is quite different from the result in 2+1 dimension, where the production rate depends only on the gradient of the magnetic fields, not on the strength of the magnetic fields. It is also found that the production of neutral fermions through the Pauli interaction is a magnetic effect whereas the production of charged particles through minimal coupling is an electric effect.Comment: 11 pages, 2 figure

    IMPACT OF US AND EUROPEAN BIOFUEL POLICIES ON FOREST CARBON

    Get PDF
    This paper develops a dynamic, regional analysis of the effects of US and European biofuel mandates on land use, forestry stocks, and carbon emissions. The results suggest that these mandates may cause an additional 23-26 million hectares of forestland losses globally, but additional carbon emissions of 1.2 – 1.6 billion t CO2. The estimates are found to be sensitive to the elasticity parameter on the land supply function in the model, with the higher elasticity estimates associated with larger carbon losses. The regional analysis turns out to be quite important, because some regions end up gaining forestland and increasing carbon stocks. The regional and dynamic effects have been missed by most other noteworthy analyses of the induced land use effects of biofuel policies, potentially leading the authors to overstate the impacts by 3-6 times.Biofuel policy, Indirect land use effects, Forest carbon sequestration, Environmental Economics and Policy, Land Economics/Use, Resource /Energy Economics and Policy,

    Better age estimations using UV-optical colours: breaking the age-metallicity degeneracy

    Get PDF
    We demonstrate that the combination of GALEX UV photometry in the FUV (~1530 angstroms) and NUV (~2310 angstroms) passbands with optical photometry in the standard U,B,V,R,I filters can efficiently break the age-metallicity degeneracy. We estimate well-constrained ages, metallicities and their associated errors for 42 GCs in M31, and show that the full set of FUV,NUV,U,B,V,R,I photometry produces age estimates that are ~90 percent more constrained and metallicity estimates that are ~60 percent more constrained than those produced by using optical filters alone. The quality of the age constraints is comparable or marginally better than those achieved using a large number of spectrscopic indices.Comment: Published in MNRAS (2007), 381, L74 (doi: 10.1111/j.1745-3933.2007.00370.x

    Revealing Cosmic Rotation

    Full text link
    Cosmological Birefringence (CB), a rotation of the polarization plane of radiation coming to us from distant astrophysical sources, may reveal parity violation in either the electromagnetic or gravitational sectors of the fundamental interactions in nature. Until only recently this phenomenon could be probed with only radio observations or observations at UV wavelengths. Recently, there is a substantial effort to constrain such non-standard models using observations of the rotation of the polarization plane of cosmic microwave background (CMB) radiation. This can be done via measurements of the BB-modes of the CMB or by measuring its TB and EB correlations which vanish in the standard model. In this paper we show that EBEB correlations-based estimator is the best for upcoming polarization experiments. The EBEB based estimator surpasses other estimators because it has the smallest noise and of all the estimators is least affected by systematics. Current polarimeters are optimized for the detection of BB-mode polarization from either primordial gravitational waves or by large scale structure via gravitational lensing. In the paper we also study optimization of CMB experiments for the detection of cosmological birefringence, in the presence of instrumental systematics, which by themselves are capable of producing EBEB correlations; potentially mimicking CB.Comment: 10 pages, 3 figures, 2 table

    c-Ets1 inhibits the interaction of NF-κB and CREB, and downregulates IL-1β-induced MUC5AC overproduction during airway inflammation

    Get PDF
    Mucin hypersecretion is frequently observed in many inflammatory diseases of the human respiratory tract. As mucin hypersecretion refers to uncontrolled mucin expression and secretion during inflammation, studies examining the negative control mechanisms of mucin hypersecretion are vital in developing novel therapeutic medications. We hypothesized that the c-Ets1 induced by interleukin (IL)-1β would decrease MUC5AC overproduction by inhibiting the interaction of NF-κB with cAMP response element-binding protein (CREB) in vivo. Stimulation with IL-1β caused the direct binding of NF-κB and CREB to the MUC5AC promoter, thus increasing MUC5AC gene expression. However, IL-1β-induced MUC5AC messenger RNA levels were surprizingly downregulated by c-Ets1 (located −938 to −930). Interestingly, c-Ets1 also suppressed IL-1β-induced MUC5AC gene expression in vitro and in vivo by disrupting the interaction of NF-κB with CREB on the MUC5AC promoter. In addition, c-Ets1 also inhibited significant morphologic changes and inflammatory cell infiltration after IL-1β exposure in mouse lungs infected with either wild-type or shRNA-c-Ets1. Moreover, reactive oxygen species produced by NOX4 increased c-Ets1 gene expression and MUC5AC gene expression in alveolar macrophages from bronchoalveolar lavage fluid. These results suggest a molecular paradigm for the establishment of a novel mechanism underlying the negative regulation of mucin overproduction, thus enhancing our understanding of airway inflammation
    corecore