28,973 research outputs found
Quark-Meson Coupling Model for a Nucleon
The quark-meson coupling model for a nucleon is considered. The model
describes a nucleon as an MIT bag, in which quarks are coupled to scalar and
vector mesons. A set of coupled equations for the quark and the meson fields
are obtained and are solved in a self-consistent way. It is shown that the mass
of a nucleon as a dressed MIT bag interacting with sigma- and omega-meson
fields significantly differs from the mass of a free MIT bag. A few sets of
model parameters are obtained so that the mass of a dressed MIT bag becomes the
nucleon mass. The results of our calculations imply that the self-energy of the
bag in the quark-meson coupling model is significant and needs to be considered
in doing the nuclear matter calculations.Comment: 3 figure
Stabilization mechanism of edge states in graphene
It has been known that edge states of a graphite ribbon are zero-energy,
localized eigen-states. We show that next nearest-neighbor hopping process
decreases the energy of the edge states at zigzag edge with respect to the
Fermi energy. The energy reduction of the edge states is calculated
analytically by first-order perturbation theory and numerically. The resultant
model is consistent with the peak of recent scanning tunneling spectroscopy
measurements.Comment: 4 pages, 2 figures, final version to appear in Applied Physics
Letter
Fractional Flux Periodicity in Doped Carbon Nanotubes
An anomalous magnetic flux periodicity of the ground state is predicted in
two-dimensional cylindrical surface composed of square and honeycomb lattice.
The ground state and persistent currents exhibit an approximate fractional
period of the flux quantum for a specific Fermi energy. The period depends on
the aspect ratio of the cylinder and on the lattice structure around the axis.
We discuss possibility of this nontrivial periodicity in a heavily doped
armchair carbon nanotube.Comment: 5 pages, 4 figure
Intersecting D-brane states derived from the KP theory
A general scheme to find tachyon boundary states is developed within the
framework of the theory of KP hierarchy. The method is applied to calculate
correlation function of intersecting D-branes and rederived the results of our
previous works as special examples. A matrix generalization of this scheme
provides a method to study dynamics of coincident multi D-branes.Comment: 10 page
Deceptive Apparent Nonadiabatic Magnetization Process
We discuss the effect of the thermal environment on the low-temperature
response of the magnetization of uniaxial magnets to a time-dependent applied
magnetic field. At sufficiently low temperatures the staircase magnetization
curves observed in molecular magnets such as Mn_{12} and Fe_8 display little
temperature dependence. However the changes of the magnetization at each step
do not seem to be directly related to the probability for a quantum mechanical
nonadiabatic transition. In order to explain this deceptive apparent
nonadiabatic behavior, we study the quantum dynamics of the system in a thermal
environment and propose a relation between the observed magnetization steps and
the quantum mechanical transition probability due to the nonadiabatic
transition.Comment: 4 pages, 7 eps figure
Controlling edge states of zigzag carbon nanotubes by the Aharonov-Bohm flux
It has been known theoretically that localized states exist around zigzag
edges of a graphite ribbon and of a carbon nanotube, whose energy eigenvalues
are located between conduction and valence bands. We found that in metallic
single-walled zigzag carbon nanotubes two of the localized states become
critical, and that their localization length is sensitive to the mean curvature
of a tube and can be controlled by the Aharonov-Bohm flux. The curvature
induced mini-gap closes by the relatively weak magnetic field. Conductance
measurement in the presence of the Aharonov-Bohm flux can give information
about the curvature effect and the critical states.Comment: 5 pages, 4 figure
Quantum Zeno effect with a superconducting qubit
Detailed schemes are investigated for experimental verification of Quantum
Zeno effect with a superconducting qubit. A superconducting qubit is affected
by a dephasing noise whose spectrum is 1/f, and so the decay process of a
superconducting qubit shows a naturally non-exponential behavior due to an
infinite correlation time of 1/f noise. Since projective measurements can
easily influence the decay dynamics having such non-exponential feature, a
superconducting qubit is a promising system to observe Quantum Zeno effect. We
have studied how a sequence of projective measurements can change the dephasing
process and also we have suggested experimental ways to observe Quantum Zeno
effect with a superconducting qubit. It would be possible to demonstrate our
prediction in the current technology
- …