21,135 research outputs found

    Weak reactions on 12C within the Continuum Random Phase Approximation with partial occupancies

    Get PDF
    We extend our previous studies of the neutrino-induced reactions on 12C and muon capture to include partial occupation of nuclear subshells in the framework of the continuum random phase approximation. We find, in contrast to the work by Auerbach et al., that a partial occupation of the p1/2 subshell reduces the inclusive cross sections only slightly. The extended model describes the muon capture rate and the 12C(nu_e,e-)12N cross section very well. The recently updated flux and the improved model bring the calculated 12C(nu_mu,mu^-)12N cross section (~ 17.5 10^{-40} cm^2) and the data (12.4 +/- 0.3(stat.) +/- 1.8(syst.) 10^{-40} cm^2) closer together, but does not remove the discrepancy fully.Comment: 12 pages, 2 figure

    Estimates of weak and electromagnetic nuclear decay signatures for neutrino reactions in Super-Kamiokande

    Get PDF
    We estimate possible delayed β decay signatures of the neutrino induced reactions on 16O in a two-step model: the primary neutrino (ν,l) process, where l is the lepton in the final state, is described within the random phase approximation, while the subsequent decay of the excited nuclear state in the final channel is treated within the statistical model. We calculate partial reaction cross sections leading to β unstable nuclei. We consider neutrino energies up to 500 MeV, relevant for atmospheric neutrino detection in Super-Kamiokande, and supernova neutrino spectra

    Quasielastic neutrino scattering from oxygen and the atmospheric neutrino problem

    Get PDF
    We examine several phenomena beyond the scope of Fermi-gas models that affect the quasielastic scattering (from oxygen) of neutrinos in the 0.1 -- 3.0 GeV range. These include Coulomb interactions of outgoing protons and leptons, a realistic finite-volume mean field, and the residual nucleon-nucleon interaction. None of these effects are accurately represented in the Monte Carlo simulations used to predict event rates due to μ\mu and ee neutrinos from cosmic-ray collisions in the atmosphere. We nevertheless conclude that the neglected physics cannot account for the anomalous μ\mu to ee ratio observed at Kamiokande and IMB, and is unlikely to change absolute event rates by more than 10--15\%. We briefly mention other phenomena, still to be investigated in detail, that may produce larger changes.Comment: In Revtex version 2. 14 pages, 3 figures (available on request from J. Engel, tel. 302-831-4354, [email protected]

    Uncertainties in nuclear transition matrix elements for neutrinoless ββ\beta \beta decay II: the heavy Majorana neutrino mass mechanism

    Full text link
    Employing four different parametrization of the pairing plus multipolar type of effective two-body interaction and three different parametrizations of Jastrow-type of short range correlations, the uncertainties in the nuclear transition matrix elements MN(0ν)M_{N}^{(0\nu)} due to the exchange of heavy Majorana neutrino for the 0+0+0^{+}\rightarrow 0^{+} transition of neutrinoless double beta decay of 94^{94}Zr, 96^{96}Zr, 98^{98}Mo, 100^{100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd isotopes in the PHFB model are estimated to be around 25%. Excluding the nuclear transition matrix elements calculated with Miller-Spenser parametrization of Jastrow short range correlations, the uncertainties are found to be 10%-15% smaller

    Neutrino–nucleus reactions and nuclear structure

    Get PDF
    The methods used in the evaluation of the neutrino–nucleus cross section are reviewed. Results are shown for a variety of targets of practical importance. Many of the described reactions are accessible in future experiments with neutrino sources from the pion and muon decays at rest, which might be available at the neutron spallation facilities. Detailed comparison between the experimental and theoretical results would establish benchmarks needed for verification and/or parameter adjustment of the nuclear models. Having a reliable tool for such calculation is of great importance in a variety of applications, e.g. the neutrino oscillation studies, detection of supernova neutrinos, description of the neutrino transport in supernovae and description of the r-process nucleosynthesis

    Neutrino-induced nucleosynthesis and the site of the r process

    Get PDF
    If the r process occurs deep within a type II supernova, probably the most popular of the proposed sites, abundances of r-process elements may be altered by the intense neutrino flux. We point out that the effects would be especially pronounced for eight isotopes that can be efficiently synthesized by the neutrino reactions following r-process freeze-out. We show that the observed abundances of these isotopes are entirely consistent with neutrino-induced nucleosynthesis, strongly arguing for a supernova r-process site. The deduced neutrino fluences place stringent constraints on the freeze-out radius and dynamic time scale of the r process

    Reactor antineutrino spectra and their application to antineutrino-induced reactions. II

    Get PDF
    The antineutrino and electron spectra associated with various nuclear fuels are calculated. While there are substantial differences between the spectra of different uranium and plutonium isotopes, the dependence on the energy and flux of the fission-inducing neutrons is very weak. The resulting spectra can be used for the calculation of the antineutrino and electron spectra of an arbitrary nuclear reactor at various stages of its refueling cycle. The sources of uncertainties in the spectrum are identified and analyzed in detail. The exposure time dependence of the spectrum is also discussed. The averaged cross sections of the inverse neutron β decay, weak charged and neutral-current-induced deuteron disintegration, and the antineutrino-electron scattering are then evaluated using the resulting ν̅_e spectra. [RADIOACTIVITY, FISSION 235U, 238U, (^239)Pu, (^240)Pu, (^241)Pu, antineutrino and electron spectra calculated. σ for ν̅ induced reactions analyzed.
    corecore