311 research outputs found
New Physics at the International Facility for Antiproton and Ion Research (FAIR) Next to GSI
The project of the international Facility for Antiproton and Ion Research
(FAIR), co-located to the GSI facility in Darmstadt, has been officially
started on November 7, 2007. The current plans of the facility and the planned
research program will be described. An investment of about 1 billion euro will
permit new physics programs in the areas of low and medium energy antiproton
research, heavy ion physics complementary to LHC, as well as in nuclear
structure and astrophysics. The facility will comprise about a dozen
accelerators and storage rings, which will enable simultaneous operations of up
to four different beams.Comment: 7 pages, 1 figure. Invited Talk presented at the "Fourth
International Conference on Fission and Properties of Neutron-Rich nuclei",
held at Sanibel Island, Florida, November 11-17, 200
On the temperature dependence of the symmetry energy
We perform large-scale shell model Monte Carlo (SMMC) calculations for many
nuclei in the mass range A=56-65 in the complete pfg_{9/2}d_{5/2} model space
using an effective quadrupole-quadrupole+pairing residual interaction. Our
calculations are performed at finite temperatures between T=0.33-2 MeV. Our
main focus is the temperature dependence of the symmetry energy which we
determine from the energy differences between various isobaric pairs with the
same pairing structure and at different temperatures. Our SMMC studies are
consistent with an increase of the symmetry energy with temperature. We also
investigate possible consequences for core-collapse supernovae events
Influence of light nuclei on neutrino-driven supernova outflows
We study the composition of the outer layers of a protoneutron star and show that light nuclei are present in substantial amounts. The composition is dominated by nucleons, deuterons, tritons and alpha particles; 3He is present in smaller amounts. This composition can be studied in laboratory experiments with new neutron-rich radioactive beams that can reproduce similar densities and temperatures. After including the corresponding neutrino interactions, we demonstrate that light nuclei have a small impact on the average energy of the emitted electron neutrinos, but are significant for the average energy of antineutrinos. During the early post-explosion phase, the average energy of electron antineutrinos is slightly increased, while at later times during the protoneutron star cooling it is reduced by about 1 MeV. The consequences of these changes for nucleosynthesis in neutrino-driven supernova outflows are discussed
Clarification of the relationship between bound and scattering states in quantum mechanics: Application to 12C + alpha
Using phase-equivalent supersymmetric partner potentials, a general result
from the inverse problem in quantum scattering theory is illustrated, i.e.,
that bound-state properties cannot be extracted from the phase shifts of a
single partial wave, as a matter of principle. In particular, recent R-matrix
analyses of the 12C + alpha system, extracting the asymptotic normalization
constant of the 2+ subthreshold state, C12, from the l=2 elastic-scattering
phase shifts and bound-state energy, are shown to be unreliable. In contrast,
this important constant in nuclear astrophysics can be deduced from the
simultaneous analysis of the l=0, 2, 4, 6 partial waves in a simplified
potential model. A new supersymmetric inversion potential and existing models
give C12=144500+-8500 fm-1/2.Comment: Expanded version (50% larger); three errors corrected (conversion of
published reduced widths to ANCs); nine references added, one remove
R-process nucleosynthesis calculations with complete nuclear physics input
The r-process constitutes one of the major challenges in nuclear
astrophysics. Its astrophysical site has not yet been identified but there is
observational evidence suggesting that at least two possible sites should
contribute to the solar system abundance of r-process elements and that the
r-process responsible for the production of elements heavier than Z=56 operates
quite robustly producing always the same relative abundances. From the
nuclear-physics point of view the r-process requires the knowledge of a large
number of reaction rates involving exotic nuclei. These include neutron capture
rates, beta-decays and fission rates, the latter for the heavier nuclei
produced in the r-process. We have developed for the first time a complete
database of reaction rates that in addition to neutron-capture rates and
beta-decay half-lives includes all possible reactions that can induce fission
(neutron-capture, beta-decay and spontaneous fission) and the corresponding
fission yields. In addition, we have implemented these reaction rates in a
fully implicit reaction network. We have performed r-process calculations for
the neutrino-driven wind scenario to explore whether or not fission can
contribute to provide a robust r-process pattern
Effects of Inelastic Neutrino-Nucleus Scattering on Supernova Dynamics and Radiated Neutrino Spectra
Based on the shell model for Gamow-Teller and the Random Phase Approximation
for forbidden transitions, we have calculated reaction rates for inelastic
neutrino-nucleus scattering (INNS) under supernova (SN) conditions, assuming a
matter composition given by Nuclear Statistical Equilibrium. The rates have
been incorporated into state-of-the-art stellar core-collapse simulations with
detailed energy-dependent neutrino transport. While no significant effect on
the SN dynamics is observed, INNS increases the neutrino opacities noticeably
and strongly reduces the high-energy tail of the neutrino spectrum emitted in
the neutrino burst at shock breakout. Relatedly the expected event rates for
the observation of such neutrinos by earthbound detectors are reduced by up to
about 60%.Comment: 4 pages, 2 figures, 1 tabl
Direct observation of 4+ to 2+ gamma transition in 8Be
The low lying states in Be are believed to have a two-alpha cluster
structure and hence a large intrinsic quadrupole deformation. An earlier
calculation showed a large collective enhancement in gamma transition
probability between the low lying states leading to a 4 to 2 gamma
branch of and a resonant radiative cross section of 134 nb for
the entrance channel. We report here the first experimental
evidence for this transition through a coincidence
measurement in the reaction He()He using a gas
target. The measured cross sections on and off the 4 resonance are 165
41 (stat) 35 (sys) nb and 39 25 (stat) 7 (sys) nb,
respectively.Comment: Total 4 pages, 4 figures, in RevTeX format, submitted to PR
Pairing Reentrance Phenomenon in Heated Rotating Nuclei in the Shell Model Monte Carlo Approach
Rotational motion of heated 72-Ge is studied within the microscopic Shell
Model Monte Carlo approach. We investigate the the angular momentum alignment
and nuclear pairing correlations associated with J-pi Cooper pairs as a
function of the rotational frequency and temperature. The reentrance of pairing
correlations with temperature is predicted at high rotational frequencies. It
manifests itself through the anomalous behavior of specific heat and level
density.Comment: 4 pages; 4 figure
Properties of Be and C deduced from the folding--potential model
The -- differential cross sections are analyzed in the
optical model using a double--folded potential. With the knowledge of this
potential bound and resonance--state properties of --cluster states in
Be and C as well as astrophysical S--factors of
He(,)Be and Be(,)C are
calculated. --widths and B(E2)--values are deduced.Comment: 2 pages LaTeX, 2 figures can be obtained from the author
Theory of Core-Collapse Supernovae
Advances in our understanding and the modeling of stellar core-collapse and
supernova explosions over the past 15 years are reviewed, concentrating on the
evolution of hydrodynamical simulations, the description of weak interactions
and nuclear equation of state effects, and new insights into the
nucleosynthesis occurring in the early phases of the explosion, in particular
the neutrino-p process. The latter is enabled by the proton-richness of the
early ejecta, which was discovered because of significant progress has been
made in the treatment of neutrino transport and weak interactions. This
progress has led to a new generation of sophisticated Newtonian and
relativistic hydrodynamics simulations in spherical symmetry. Based on these,
it is now clear that the prompt bounce-shock mechanism is not the driver of
supernova explosions, and that the delayed neutrino-heating mechanism can
produce explosions without the aid of multi-dimensional processes only if the
progenitor star has an ONeMg core inside a very dilute He-core, i.e., has a
mass in the 8--10 solar mass range. Hydrodynamic instabilities of various kinds
have indeed been recognized to occur in the supernova core and to be of
potential importance for the explosion. Neutrino-driven explosions, however,
have been seen in two-dimensional simulations with sophisticated neutrino
transport so far only when the star has a small iron core and low density in
the surrounding shells as being found in stars near 10--11 solar masses. The
explosion mechanism of more massive progenitors is still a puzzle. It might
involve effects of three-dimensional hydrodynamics or might point to the
relevance of rapid rotation and magnetohydrodynamics, or to still incompletely
explored properties of neutrinos and the high-density equation of state.Comment: 49 pages, 20 figures; submitted to the Bethe Centennial Volume of
Physics Report
- …