65,708 research outputs found

    A Comparison of Different Machine Transliteration Models

    Full text link
    Machine transliteration is a method for automatically converting words in one language into phonetically equivalent ones in another language. Machine transliteration plays an important role in natural language applications such as information retrieval and machine translation, especially for handling proper nouns and technical terms. Four machine transliteration models -- grapheme-based transliteration model, phoneme-based transliteration model, hybrid transliteration model, and correspondence-based transliteration model -- have been proposed by several researchers. To date, however, there has been little research on a framework in which multiple transliteration models can operate simultaneously. Furthermore, there has been no comparison of the four models within the same framework and using the same data. We addressed these problems by 1) modeling the four models within the same framework, 2) comparing them under the same conditions, and 3) developing a way to improve machine transliteration through this comparison. Our comparison showed that the hybrid and correspondence-based models were the most effective and that the four models can be used in a complementary manner to improve machine transliteration performance

    Reply to "Comment on `First-principles calculation of the superconducting transition in MgB2 within the anisotropic Eliashberg formalism'"

    Full text link
    The recent preprint by Mazin et al. [cond-mat/0212417] contains many inappropriate evaluations and/or criticisms on our published work [Phys. Rev. B 66, 020513 (2002) and Nature 418, 758 (2002)]. The preprint [cond-mat/0212417v1] was submitted to Physical Review B as a comment on one of our papers [Phys. Rev. B 66, 020513 (2002)]. In the reviewing process, Mazin et al. have withdrawn many of the statements contained in cond-mat/0212417v1, however two claims remain in their revised manuscript [cond-mat/0212417v3]: (1) the calculated variations of the superconducting energy gap within the sigma- or the pi-bands are not observable in real samples due to scatterings, and (2) the Coulomb repulsion mu(k,k') is negligibly small between sigma- and pi-states and thus should be approximated by a diagonal 2 x 2 matrix in the sigma and pi channels. Here, we point out that the former does not affect the validity of our theoretical work which is for the clean limit, and that the latter is not correct

    Deconstruction and Gauge Theories in AdS_5

    Get PDF
    On a slice of AdS_5, despite having a dimensionful coupling, gauge theories can exhibit logarithmic dependence on scale. In this paper, we utilize deconstruction to analyze the scaling behavior of the theory, both above and below the AdS curvature scale, and shed light on position-dependent regularizations of the theory. We comment on applications to geometries other than AdS.Comment: 15 pages, 1 figur

    Persistence of singlet fluctuations in the coupled spin tetrahedra system Cu2Te2O5Br2 revealed by high-field magnetization and 79Br NQR - 125Te NMR

    Full text link
    We present high-field magnetization and 79^{79}Br nuclear quadrupole resonance (NQR) and 125^{125}Te nuclear magnetic resonance (NMR) studies in the weakly coupled Cu2+^{2+} (S=1/2S=1/2) tetrahedral system Cu2_2Te2_2O5_5Br2_2. The field-induced level crossing effects were observed by the magnetization measurements in a long-ranged magnetically ordered state which was confirmed by a strong divergence of the spin-lattice relaxation rate 1/T1 at T0=13.5 K. In the paramagnetic state, 1/T1 reveals an effective singlet-triplet spin gap much larger than that observed by static bulk measurements. Our results imply that the inter- and the intra-tetrahedral interactions compete, but at the same time they cooperate strengthening effectively the local intratetrahedral exchange couplings. We discuss that the unusual feature originates from the frustrated intertetrahedral interactions.Comment: 5 pages, 4 figures, accepted in Phys. Rev. B as a Rapid Communication

    Sparticle masses in deflected mirage mediation

    Full text link
    We discuss the sparticle mass patterns that can be realized in deflected mirage mediation scenario of supersymmetry breaking, in which the moduli, anomaly, and gauge mediations all contribute to the MSSM soft parameters. Analytic expression of low energy soft parameters and also the sfermion mass sum rules are derived, which can be used to interpret the experimentally measured sparticle masses within the framework of the most general mixed moduli-gauge-anomaly mediation. Phenomenological aspects of some specific examples are also discussed.Comment: 43 pages, 17 figures, references adde

    The Gaugino Code

    Get PDF
    Gauginos might play a crucial role in the search for supersymmetry at the Large Hadron Collider (LHC). Mass predictions for gauginos are rather robust and often related to the values of the gauge couplings. We analyse the ratios of gaugino masses in the LHC energy range for various schemes of supersymmetry breakdown and mediation. Three distinct mass patterns emerge.Comment: 42 pages, Latex; a discussion of deflected anomaly mediation added, references adde
    • …
    corecore