9,984 research outputs found
Pearling instability of nanoscale fluid flow confined to a chemical channel
We investigate the flow of a nano-scale incompressible ridge of
low-volatility liquid along a "chemical channel": a long, straight, and
completely wetting stripe embedded in a planar substrate, and sandwiched
between two extended less wetting solid regions. Molecular dynamics
simulations, a simple long-wavelength approximation, and a full stability
analysis based on the Stokes equations are used, and give qualitatively
consistent results. While thin liquid ridges are stable both statically and
during flow, a (linear) pearling instability develops if the thickness of the
ridge exceeds half of the width of the channel. In the flowing case periodic
bulges propagate along the channel and subsequently merge due to nonlinear
effects. However, the ridge does not break up even when the flow is unstable,
and the qualitative behavior is unchanged even when the fluid can spill over
onto a partially wetting exterior solid region.Comment: 17 pages, 12 figures, submitted to Physics of Fluids, fixed equation
numbering after Eq. (17
Evidence for a first order transition in a plaquette 3d Ising-like action
We investigate a 3d Ising action which corresponds to a a class of models
defined by Savvidy and Wegner, originally intended as discrete versions of
string theories on cubic lattices. These models have vanishing bare surface
tension and the couplings are tuned in such a way that the action depends only
on the angles of the discrete surface, i.e. on the way the surface is embedded
in . Hence the name gonihedric by which they are known. We show that
the model displays a rather clear first order phase transition in the limit
where self-avoidance is neglected and the action becomes a plaquette one. This
transition persists for small values of the self avoidance coupling, but it
turns to second order when this latter parameter is further increased. These
results exclude the use of this type of action as models of gonihedric random
surfaces, at least in the limit where self avoidance is neglected.Comment: 4 pages Latex text, 4 postscript figure
Vibrations, coverage, and lateral order of atomic nitrogen and formation of NH<sub>3</sub> on Ru(10̅̅10)
The dissociative chemisorption of nitrogen on the Ru(10̅10) surface has been studied using high-resolution electron energy loss spectroscopy (HREELS), thermal desorption spectroscopy (TDS) and low-energy electron diffraction (LEED). To prepare a surface covered by atomic nitrogen we have used ionization-gauge assisted adsorption. A saturation coverage of θN=0.6 is achieved of which about 30% is in the subsurface region. At saturation coverage a (-1/2 1/1) pattern is observed. Then v ǁ(Ru–N) mode at 41 meV and the v_l_(Ru–N) mode at 60 meV are identified. Upon exposing the nitrogen covered surface to hydrogen at 300 K we have observed the formation of NH3 which is characterized by its symmetric bending mode δs(NH3) at 149 meV. At 400 K, NH3 could not be detected. The reaction intermediate NH is stable up to 450 K and has been identified by its vibrational losses ν(Ru–NH) at 86 meV, and ν(N–H) at 408 meV. The TD spectra of mass 14 show three desorption states of nitrogen, Nα at 740 K (from subsurface N), Nβ shifting from 690 to 640 K with increasing coverage, and Nϒ at 550 K. The activation energy for desorption via the Nβ state is 120±10 kJ/mol. The TD spectra of mass two showed three desorption states at 450, 550, and 650 K due to the decomposition of NHx
Coverage, lateral order, and vibrations of atomic nitrogen on Ru(0001)
The N/Ru(0001) system was studied by thermal desorption spectroscopy (TDS), low‐energy electron diffraction (LEED), and high‐resolution electron energy‐loss spectroscopy (HREELS). Atomic nitrogen was prepared by NH3 decomposition at sample temperatures decreasing from 500 to 350 K during NH3 exposure. A maximum N coverage of θN=0.38 could thus be achieved. ∛, split 2×2 and 2×2 LEED patterns were observed for decreasing θN. After NH3 decomposition and before annealing the sample to a temperature above 400 K, the surface is composed of adsorbed N, H, and NH species. This composite layer exhibits a split ∛ LEED pattern due to domains of size 4 with heavy walls. This phase decays through dissociation of NH leading to sharp first‐order type desorption peaks of H2 and N2. From the weak intensity of the ν(Ru–NH) stretch mode it is concluded that NH is adsorbed at threefold‐hollow sites. The energy of the ν(Ru–N) mode shifts from 70.5 to 75.5 meV when θN is increased from 0.25 to 0.38
The Adsorption of Atomic Nitrogen on Ru(0001): Geometry and Energetics
The local adsorption geometries of the (2x2)-N and the (sqrt(3)x
sqrt(3))R30^o -N phases on the Ru(0001) surface are determined by analyzing
low-energy electron diffraction (LEED) intensity data. For both phases,
nitrogen occupies the threefold hcp site. The nitrogen sinks deeply into the
top Ru layer resulting in a N-Ru interlayer distance of 1.05 AA and 1.10 AA in
the (2x2) and the (sqrt(3)x sqrt(3))R30^o unit cell, respectively. This result
is attributed to a strong N binding to the Ru surface (Ru--N bond length = 1.93
AA) in both phases as also evidenced by ab-initio calculations which revealed
binding energies of 5.82 eV and 5.59 eV, respectively.Comment: 17 pages, 5 figures. Submitted to Chem. Phys. Lett. (October 10,
1996
Out-of-equilibrium critical dynamics at surfaces: Cluster dissolution and non-algebraic correlations
We study nonequilibrium dynamical properties at a free surface after the
system is quenched from the high-temperature phase into the critical point. We
show that if the spatial surface correlations decay sufficiently rapidly the
surface magnetization and/or the surface manifold autocorrelations has a
qualitatively different universal short time behavior than the same quantities
in the bulk. At a free surface cluster dissolution may take place instead of
domain growth yielding stationary dynamical correlations that decay in a
stretched exponential form. This phenomenon takes place in the
three-dimensional Ising model and should be observable in real ferromagnets.Comment: 4 pages, 4 figure
Shear flow pumping in open microfluidic systems
We propose to drive open microfluidic systems by shear in a covering fluid
layer, e.g., oil covering water-filled chemical channels. The advantages as
compared to other means of pumping are simpler forcing and prevention of
evaporation of volatile components. We calculate the expected throughput for
straight channels and show that devices can be built with off-the-shelf
technology. Molecular dynamics simulations suggest that this concept is
scalable down to the nanoscale.Comment: 4 pages, 4 figure, submitted to Phys. Rev. Let
Sticking coefficient for dissociative adsorption of N<sub>2</sub> on Ru single‐crystal surfaces
The dissociative chemisorption of N2 on Ru(0001), Ru(101̄0), and Ru(112̄1) surfaces at 300 K was studied by means of high‐resolution electron energy loss spectroscopy and thermal desorption spectroscopy. The initial sticking coefficient was determined to s0=(1±0.8)×10−12, within the limits of error independent of surface orientation. On Ru(101̄0) and Ru(112̄1) small amounts of N can be dissolved into the subsurface region
String tension in gonihedric 3D Ising models
For the 3D gonihedric Ising models defined by Savvidy and Wegner the bare
string tension is zero and the energy of a spin interface depends only on the
number of bends and self-intersections, in antithesis to the standard
nearest-neighbour 3D Ising action. When the parameter kappa weighting the
self-intersections is small the model has a first order transition and when it
is larger the transition is continuous.
In this paper we investigate the scaling of the renormalized string tension,
which is entirely generated by fluctuations, using Monte Carlo simulations This
allows us to obtain an estimate for the critical exponents alpha and nu using
both finite-size-scaling and data collapse for the scaling function.Comment: Latex + postscript figures. 8 pages text plus 7 figures, spurious
extra figure now removed
- …