516 research outputs found
Aging of poled ferroelectric ceramics due to relaxation of random depolarization fields by space-charge accumulation near grain boundaries
Migration of charged point defects triggered by the local random
depolarization field is shown to plausibly explain aging of poled ferroelectric
ceramics providing reasonable time and acceptor concentration dependences of
the emerging internal bias field. The theory is based on the evaluation of the
energy of the local depolarization field caused by mismatch of the
polarizations of neighbor grains. The kinetics of charge migration assumes
presence of mobile oxygen vacancies in the material due to the intentional or
unintentional acceptor doping. Satisfactory agreement of the theory with
experiment on the Fe-doped lead zirconate titanate is demonstrated.Comment: theory and experiment, 22 pages, 3 figure
Space-charge mechanism of aging in ferroelectrics: an exactly solvable two-dimensional model
A mechanism of point defect migration triggered by local depolarization
fields is shown to explain some still inexplicable features of aging in
acceptor doped ferroelectrics. A drift-diffusion model of the coupled charged
defect transport and electrostatic field relaxation within a two-dimensional
domain configuration is treated numerically and analytically. Numerical results
are given for the emerging internal bias field of about 1 kV/mm which levels
off at dopant concentrations well below 1 mol%; the fact, long ago known
experimentally but still not explained. For higher defect concentrations a
closed solution of the model equations in the drift approximation as well as an
explicit formula for the internal bias field is derived revealing the plausible
time, temperature and concentration dependencies of aging. The results are
compared to those due to the mechanism of orientational reordering of defect
dipoles.Comment: 8 pages, 4 figures. accepted to Physical Review
KAM for the quantum harmonic oscillator
In this paper we prove an abstract KAM theorem for infinite dimensional
Hamiltonians systems. This result extends previous works of S.B. Kuksin and J.
P\"oschel and uses recent techniques of H. Eliasson and S.B. Kuksin. As an
application we show that some 1D nonlinear Schr\"odinger equations with
harmonic potential admits many quasi-periodic solutions. In a second
application we prove the reducibility of the 1D Schr\"odinger equations with
the harmonic potential and a quasi periodic in time potential.Comment: 54 pages. To appear in Comm. Math. Phy
Internal states of model isotropic granular packings. III. Elastic properties
In this third and final paper of a series, elastic properties of numerically
simulated isotropic packings of spherical beads assembled by different
procedures and subjected to a varying confining pressure P are investigated. In
addition P, which determines the stiffness of contacts by Hertz's law, elastic
moduli are chiefly sensitive to the coordination number, the possible values of
which are not necessarily correlated with the density. Comparisons of numerical
and experimental results for glass beads in the 10kPa-10MPa range reveal
similar differences between dry samples compacted by vibrations and lubricated
packings. The greater stiffness of the latter, in spite of their lower density,
can hence be attributed to a larger coordination number. Voigt and Reuss bounds
bracket bulk modulus B accurately, but simple estimation schemes fail for shear
modulus G, especially in poorly coordinated configurations under low P.
Tenuous, fragile networks respond differently to changes in load direction, as
compared to load intensity. The shear modulus, in poorly coordinated packings,
tends to vary proportionally to the degree of force indeterminacy per unit
volume. The elastic range extends to small strain intervals, in agreement with
experimental observations. The origins of nonelastic response are discussed. We
conclude that elastic moduli provide access to mechanically important
information about coordination numbers, which escape direct measurement
techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
On the pion-nucleon coupling constant
In view of persisting misunderstanding about the determination of the
pion-nucleon coupling constants in the Nijmegen multienergy partial-wave
analyses of pp, np, and pbar-p scattering data, we present additional
information which may clarify several points of discussion. We comment on
several recent papers addressing the issue of the pion-nucleon coupling
constant and criticizing the Nijmegen analyses.Comment: 19 pages, Nijmegen preprint THEF-NYM-92-0
First results on light readout from the 1-ton ArDM liquid argon detector for dark matter searches
ArDM-1t is the prototype for a next generation WIMP detector measuring both
the scintillation light and the ionization charge from nuclear recoils in a
1-ton liquid argon target. The goal is to reach a minimum recoil energy of
30\,keVr to detect recoiling nuclei. In this paper we describe the experimental
concept and present results on the light detection system, tested for the first
time in ArDM on the surface at CERN. With a preliminary and incomplete set of
PMTs, the light yield at zero electric field is found to be between 0.3-0.5
phe/keVee depending on the position within the detector volume, confirming our
expectations based on smaller detector setups.Comment: 14 pages, 10 figures, v2 accepted for publication in JINS
- …