556 research outputs found

    Nonclassicality of pure two-qutrit entangled states

    Full text link
    We report an exhaustive numerical analysis of violations of local realism by two qutrits in all possible pure entangled states. In Bell type experiments we allow any pairs of local unitary U(3) transformations to define the measurement bases. Surprisingly, Schmidt rank-2 states, resembling pairs of maximally entangled qubits, lead to the most noise-robust violations of local realism. The phenomenon seems to be even more pronounced for four and five dimensional systems, for which we tested a few interesting examples.Comment: 6 pages, journal versio

    Local Conversion of Greenberger-Horne-Zeilinger States to Approximate W States

    Full text link
    Genuine 3-qubit entanglement comes in two different inconvertible types represented by the Greenberger-Horne-Zeilinger (GHZ) state and the W state. We describe a specific method based on local positive operator valued measures and classical communication that can convert the ideal N-qubit GHZ state to a state arbitrarily close to the ideal N-qubit W state. We then experimentally implement this scheme in the 3-qubit case and characterize the input and the final state using 3-photon quantum state tomography.Comment: 4 pages, 3 figure

    Full characterization of a three-photon GHZ state using quantum state tomography

    Full text link
    We have performed the first experimental tomographic reconstruction of a three-photon polarization state. Quantum state tomography is a powerful tool for fully describing the density matrix of a quantum system. We measured 64 three-photon polarization correlations and used a "maximum-likelihood" reconstruction method to reconstruct the GHZ state. The entanglement class has been characterized using an entanglement witness operator and the maximum predicted values for the Mermin inequality was extracted.Comment: 3 pages, 3 figure

    Comment on "Exclusion of time in the theorem of Bell" by K. Hess and W. Philipp

    Full text link
    A recent Letter by Hess and Philipp claims that Bell's theorem neglects the possibility of time-like dependence in local hidden variables, hence is not conclusive. Moreover the authors claim that they have constructed, in an earlier paper, a local realistic model of the EPR correlations. However, they themselves have neglected the experimenter's freedom to choose settings, while on the other hand, Bell's theorem can be formulated to cope with time-like dependence. This in itself proves that their toy model cannot satisfy local realism, but we also indicate where their proof of its local realistic nature fails.Comment: Latex needs epl.cl

    A high-reflectivity high-Q micromechanical Bragg-mirror

    Get PDF
    We report on the fabrication and characterization of a micromechanical oscillator consisting only of a free-standing dielectric Bragg mirror with high optical reflectivity and high mechanical quality. The fabrication technique is a hybrid approach involving laser ablation and dry etching. The mirror has a reflectivity of 99.6%, a mass of 400ng, and a mechanical quality factor Q of approximately 10^4. Using this micromirror in a Fabry Perot cavity, a finesse of 500 has been achieved. This is an important step towards designing tunable high-Q high-finesse cavities on chip.Comment: 3 pages, 2 figure

    Quantum nonlocality obtained from local states by entanglement purification

    Full text link
    We have applied an entanglement purification protocol to produce a single entangled pair of photons capable of violating a CHSH Bell inequality from two pairs that individually could not. The initial poorly-entangled photons were created by a controllable decoherence that introduced complex errors. All of the states were reconstructed using quantum state tomography which allowed for a quantitative description of the improvement of the state after purification.Comment: 4 pages, 4 figure

    Self-cooling of a micro-mirror by radiation pressure

    Get PDF
    We demonstrate passive feedback cooling of a mechanical resonator based on radiation pressure forces and assisted by photothermal forces in a high-finesse optical cavity. The resonator is a free-standing high-reflectance micro-mirror (of mass m=400ng and mechanical quality factor Q=10^4) that is used as back-mirror in a detuned Fabry-Perot cavity of optical finesse F=500. We observe an increased damping in the dynamics of the mechanical oscillator by a factor of 30 and a corresponding cooling of the oscillator modes below 10 K starting from room temperature. This effect is an important ingredient for recently proposed schemes to prepare quantum entanglement of macroscopic mechanical oscillators.Comment: 11 pages, 9 figures, minor correction
    • …
    corecore