14 research outputs found

    The Optical Gravitational Lensing Experiment. Monitoring of QSO 2237+0305

    Get PDF
    We present results from 2 years of monitoring of Huchra's lens (QSO 2237+0305) with the 1.3 m Warsaw telescope on Las Campanas, Chile. Photometry in the V band was done using a newly developed method for image subtraction. Reliable subtraction without Fourier division removes all complexities associated with the presence of a bright lensing galaxy. With positions of lensed images adopted from HST measurements it is relatively easy to fit the variable part of the flux in this system, as opposed to modeling of the underlying galaxy. For the first time we observed smooth light variation over a period of a few months, which can be naturally attributed to microlensing. We also describe automated software capable of real time analysis of the images of QSO 2237+0305. It is expected that starting from the next observing season in 1999 an alert system will be implemented for high amplification events (HAE) in this object. Time sampling and photometric accuracy achieved should be sufficient for early detection of caustic crossings.Comment: 8 pages (including 4 figures and table), latex, emulateapj, submitted to ApJ, revised version - minor change

    Optical Gravitational Lensing Experiment. OGLE-1999-BUL-32: the Longest Ever Microlensing Event -- Evidence for a Stellar Mass Black Hole?

    Get PDF
    We describe the discovery of the longest microlensing event ever observed, OGLE-1999-BUL-32, also independently identified by the MACHO collaboration as MACHO-99-BLG-22. This unique event has an Einstein radius crossing time of 641 days. The high quality data obtained with difference image analysis shows a small but significant parallax signature. This parallax effect allows one to determine the Einstein radius projected onto the observer plane as rE^hat ~ 29.2AU. The transverse velocity projected onto the observer plane is about 79km/s. We argue that the lens is likely to be have a mass of at least a few solar masses, i.e., it could be a stellar black hole. The black hole hypothesis can be tested using the astrometric microlensing signature with the soon-to-be installed Advanced Camera for Surveys on board the Hubble Space Telescope. Deep X-ray and radio images may also be useful for revealing the nature of the object.Comment: submitted to Monthly Notice

    Combined Analysis of the Binary-Lens Caustic-Crossing Event MACHO 98-SMC-1

    Get PDF
    We fit the data for the binary-lens microlensing event MACHO 98-SMC-1 from 5 different microlensing collaborations and find two distinct solutions characterized by binary separation d and mass ratio q: (d,q)=(0.54,0.50) and (d,q)=(3.65,0.36), where d is in units of the Einstein radius. However, the relative proper motion of the lens is very similar in the two solutions, 1.30 km/s/kpc and 1.48 km/s/kpc, thus confirming that the lens is in the Small Magellanic Cloud. The close binary can be either rotating or approximately static but the wide binary must be rotating at close its maximum allowed rate to be consistent with all the data. We measure limb-darkening coefficients for five bands ranging from I to V. As expected, these progressively decrease with rising wavelength. This is the first measurement of limb darkening for a metal-poor A star.Comment: 29 pages + 9 figures + 2 tables, submitted to Ap
    corecore