95 research outputs found

    Lessons of spin and torsion: Reply to ``Consistent coupling to Dirac fields in teleparallelism"

    Full text link
    In reply to the criticism made by Mielke in the pereceding Comment [Phys. Rev. D69 (2004) 128501] on our recent paper, we once again explicitly demonstrate the inconsistency of the coupling of a Dirac field to gravitation in the teleparallel equivalent of general relativity. Moreover, we stress that the mentioned inconsistency is generic for {\it all} sources with spin and is by no means restricted to the Dirac field. In this sense the SL(4,R)SL(4,R)-covariant generalization of the spinor fields in the teleparallel gravity theory is irrelevant to the inconsistency problem.Comment: Revtex, 4 pages, no figure

    On closed rotating worlds

    Get PDF
    A new solution for the stationary closed world with rigid rotation is obtained for the spinning fluid source. It is found that the spin and vorticity are locally balanced. This model qualitatively shows that the local rotation of the cosmological matter can be indeed related to the global cosmic vorticity, provided the total angular momentum of the closed world is vanishing.Comment: 10 pages, Revtex, to appear in Phys. Rev. D6

    Metric-affine gauge theory of gravity II. Exact solutions

    Full text link
    In continuing our series on metric-affine gravity (see Gronwald IJMP D6 (1997) 263 for Part I), we review the exact solutions in this theory.Comment: Revtex file, 25 pages, final version to appear in IJMP

    Teleparallel origin of the Fierz picture for spin-2 particle

    Get PDF
    A new approach to the description of spin-2 particle in flat and curved spacetime is developed on the basis of the teleparallel gravity theory. We show that such an approach is in fact a true and natural framework for the Fierz representation proposed recently by Novello and Neves. More specifically, we demonstrate how the teleparallel theory fixes uniquely the structure of the Fierz tensor, discover the transparent origin of the gauge symmetry of the spin 2 model, and derive the linearized Einstein operator from the fundamental identity of the teleparallel gravity. In order to cope with the consistency problem on the curved spacetime, similarly to the usual Riemannian approach, one needs to include the non-minimal (torsion dependent) coupling terms.Comment: 5 pages, Revtex4, no figures. Accepted for publication in Phys. Rev.

    Localized ferromagnetic resonance force microscopy in permalloy-cobalt films

    Full text link
    We report Ferromagnetic Resonance Force Microscopy (FMRFM) experiments on a justaposed continuous films of permalloy and cobalt. Our studies demonstrate the capability of FMRFM to perform local spectroscopy of different ferromagnetic materials. Theoretical analysis of the uniform resonance mode near the edge of the film agrees quantitatively with experimental data. Our experiments demonstrate the micron scale lateral resolution in determining local magnetic properties in continuous ferromagnetic samples.Comment: 7 pages, 3 figure

    Adsorption of a random heteropolymer at a potential well revisited: location of transition point and design of sequences

    Full text link
    The adsorption of an ideal heteropolymer loop at a potential point well is investigated within the frameworks of a standard random matrix theory. On the basis of semi-analytical/semi-numerical approach the histogram of transition points for the ensemble of quenched heteropolymer structures with bimodal symmetric distribution of types of chain's links is constructed. It is shown that the sequences having the transition points in the tail of the histogram display the correlations between nearest-neighbor monomers.Comment: 11 pages (revtex), 3 figure

    Manipulating Spins by Cantilever Synchronized Frequency Modulation: A Variable Resolution Magnetic Resonance Force Microscope

    Full text link
    We report a new spin manipulation protocol for periodically reversing the sample magnetization for Magnetic Resonance Force Microscopy. The protocol modulates the microwave excitation frequency synchronously with the position of the oscillating detection cantilever, thus allowing manipulation of the spin magnetization independent of both magnetic field gradient strength and cantilever response time. This allows continuous variation of the detected sample volume and is effective regardless of spin relaxation rate. This enhanced flexibility improves the utility of MRFM as a generally applicable imaging and characterization tool.Comment: 3 pages, 3 figure

    Teleparallel Versions of Friedmann and Lewis-Papapetrou Spacetimes

    Get PDF
    This paper is devoted to investigate the teleparallel versions of the Friedmann models as well as the Lewis-Papapetrou solution. We obtain the tetrad and the torsion fields for both the spacetimes. It is shown that the axial-vector vanishes for the Friedmann models. We discuss the different possibilities of the axial-vector depending on the arbitrary functions ω\omega and ψ\psi in the Lewis-Papapetrou metric. The vector related with spin has also been evaluated.Comment: 13 pages, accepted for publication in GR

    so(4) Plebanski Action and Relativistic Spin Foam Model

    Get PDF
    In this note we study the correspondence between the ``relativistic spin foam'' model introduced by Barrett, Crane and Baez and the so(4) Plebanski action. We argue that the so(4)so(4) Plebanski model is the continuum analog of the relativistic spin foam model. We prove that the Plebanski action possess four phases, one of which is gravity and outline the discrepancy between this model and the model of Euclidean gravity. We also show that the Plebanski model possess another natural dicretisation and can be associate with another, new, spin foam model that appear to be the so(4)so(4) counterpart of the spin foam model describing the self dual formulation of gravity.Comment: 12 pages, REVTeX using AMS fonts. Some minor corrections and improvement
    corecore