43 research outputs found
Mechanisms of proton-proton inelastic cross-section growth in multi-peripheral model within the framework of perturbation theory. Part 2
We demonstrate a new technique for calculating proton-proton inelastic
cross-section, which allows one by application of the Laplace' method replace
the integrand in the integral for the scattering amplitude in the vicinity of
the maximum point by expression of Gaussian type. This in turn, allows one to
overcome the computational difficulties for the calculation of the integrals
expressing the cross section to sufficiently large numbers of particles. We
have managed to overcome these problems in calculating the proton-proton
inelastic cross-section for production (n \le 8) number of secondary particles
in within the framework of \phi^3 model. As the result the obtained dependence
of inelastic cross-section and total scattering cross-section on the energy
\sqrt{s} are qualitative agrees with the experimental data. Such description of
total cross-section behavior differs considerably from existing now
description, where reggeons exchange with the intercept greater than unity is
considered.Comment: 11 pages, 10 figures (v3: some inaccuracies corrected
Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope
This paper reports a search for spatial clustering of the arrival directions of high energy muon neutrinos detected by the ANTARES neutrino telescope. An improved two-point correlation method is used to study the autocorrelation of 3058 neutrino candidate events as well as cross-correlations with other classes of astrophysical objects: sources of high energy gamma rays, massive black holes and nearby galaxies. No significant deviations from the isotropic distribution of arrival directions expected from atmospheric backgrounds are observed
Searches for Point-like and extended neutrino sources close to the Galactic Centre using the ANTARES neutrino Telescope
A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates R.A. = -46 degrees.8 and decl. = -64 degrees.9 and corresponds to a 2.2 sigma background fluctuation. In addition, upper limits on the flux normalization of an E-2 muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of seven events relatively close to the Galactic Center in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E-2 energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1 x 10(-8) GeV cm(-2) s(-1), depending on the exact location of the source
Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data
This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08 x 10(46) erg s(-1) This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars
A search for time dependent neutrino emission from microquasars with the ANTARES telescope
Results are presented on a search for neutrino emission from a sample of six microquasars, based on the data collected by the ANTARES neutrino telescope between 2007 and 2010. By means of appropriate time cuts, the neutrino search has been restricted to the periods when the acceleration of relativistic jets was taking place at the microquasars under study. The time cuts have been chosen using the information from the X-ray telescopes RXTE/ASM and Swift/BAT, and, in one case, the gamma-ray telescope Fermi/LAT. No statistically significant excess has been observed, thus upper limits on the neutrino fluences have been derived and compared to the predictions by models. Constraints have been put on the ratio of proton to electron luminosity in the jets
Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data
9 pages, 8 figures; added Fig. 1 with effective area, updated Fig. 8 (b) according to arXiv:1204.4219 ; Références publication Astron Astrophys 559 (2013) A9International audienceAims. We search for muon neutrinos in coincidence with GRBs with the ANTARES neutrino detector using data from the end of 2007 to 2011. Methods. Expected neutrino fluxes were calculated for each burst individually. The most recent numerical calculations of the spectra using the NeuCosmA code were employed, which include Monte Carlo simulations of the full underlying photohadronic interaction processes. The discovery probability for a selection of 296 GRBs in the given period was optimised using an extended maximum-likelihood strategy. Results. No significant excess over background is found in the data, and 90% confidence level upper limits are placed on the total expected flux according to the model
A search for neutrino emission from the Fermi bubbles with the ANTARES telescope
Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source
Deep sea tests of a prototype of the KM3NeT digital optical module
The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deepwaters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same (40)Kdecay and the localisation of bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions
The assessment of a method for measurements and lead quantification in air particulate matter using total reflection X-ray fluorescence spectrometers
This paper presents the assessment of a direct method to measure and analyse Pb in air particulate matter (PM) collected on polytetrafluoroethylene (PTFE) filtering membranes prepared by the SMART STOREÂź procedure. The suitability of grazing incidence X-ray fluorescence technique is verified on a set of continuous and conformal thin film samples created by atomic layer deposition. Different scans changing the angles of incidence are performed and the fluorescence intensity of thin films on PTFE substrate compared with that obtained by similar thin films deposited on Si wafer substrates. The effects of sample preparation, constraints, and limitations of the experimental setup are discussed. The results obtained by three commercial total reflection X-ray fluorescence spectrometers, equipped with Mo or Rh X-ray tubes, are compared. Reference samples with different Pb content are used to define the best measurement conditions, corresponding to the maximum fluorescence intensity. The precision is evaluated in terms of relative standard deviation of the net intensity, taking into account the homogeneity of the PM samples and hardware contributions to the errors. The calibration curves are built on the basis of mono- and multi-elemental Pb loaded PTFE reference samples. The analytical parameters, namely linear calibration and determination range, limits of detection, and quantification, are determined