48 research outputs found

    Ubiquitin E3 Ligase Ring1b/Rnf2 of Polycomb Repressive Complex 1 Contributes to Stable Maintenance of Mouse Embryonic Stem Cells

    Get PDF
    Polycomb repressive complex 1 (PRC1) core member Ring1b/Rnf2, with ubiquitin E3 ligase activity towards histone H2A at lysine 119, is essential for early embryogenesis. To obtain more insight into the role of Ring1b in early development, we studied its function in mouse embryonic stem (ES) cells.We investigated the effects of Ring1b ablation on transcriptional regulation using Ring1b conditional knockout ES cells and large-scale gene expression analysis. The absence of Ring1b results in aberrant expression of key developmental genes and deregulation of specific differentiation-related pathways, including TGFbeta signaling, cell cycle regulation and cellular communication. Moreover, ES cell markers, including Zfp42/Rex-1 and Sox2, are downregulated. Importantly, retained expression of ES cell regulators Oct4, Nanog and alkaline phosphatase indicates that Ring1b-deficient ES cells retain important ES cell specific characteristics. Comparative analysis of our expression profiling data with previously published global binding studies shows that the genes that are bound by Ring1b in ES cells have bivalent histone marks, i.e. both active H3K4me3 and repressive H3K27me3, or the active H3K4me3 histone mark alone and are associated with CpG-'rich' promoters. However, deletion of Ring1b results in deregulation, mainly derepression, of only a subset of these genes, suggesting that additional silencing mechanisms are involved in repression of the other Ring1b bound genes in ES cells.Ring1b is essential to stably maintain an undifferentiated state of mouse ES cells by repressing genes with important roles during differentiation and development. These genes are characterized by high CpG content promoters and bivalent histone marks or the active H3K4me3 histone mark alone

    Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase.

    No full text
    BACKGROUND: Mice with cardiac-specific overexpression of signal transducer and activator of transcription 3 (STAT3) are resistant to doxorubicin-induced damage. The STAT3 signal may be involved in the detoxification of reactive oxygen species (ROS). METHODS AND RESULTS: The effects of leukemia inhibitory factor (LIF) or adenovirus-mediated transfection of constitutively activated STAT3 (caSTAT3) on the intracellular ROS formation induced by hypoxia/reoxygenation (H/R) were examined using rat neonatal cardiomyocytes. Either LIF treatment or caSTAT3 significantly suppressed the increase of H/R-induced ROS evaluated by 2',7'-dichlorofluorescin diacetate fluorescence. To assess whether ROS are really involved in H/R-induced cardiomyocyte injury, the amount of creatine phosphokinase in cultured medium was examined. Both LIF treatment and caSTAT3 significantly decreased H/R-induced creatine phosphokinase release. These results indicate that the gp130/STAT3 signal protects H/R-induced cardiomyocyte injury by scavenging ROS generation. To investigate the mechanism of scavenging ROS, the effects of LIF on the induction of antioxidant enzymes were examined. LIF treatment significantly increased the expression of manganese superoxide dismutase (MnSOD) mRNA, whereas the expression of the catalase and glutathione peroxidase genes were unaffected. This induction of MnSOD mRNA expression was completely blocked by adenovirus-mediated transfection of dominant-negative STAT3. Moreover, caSTAT3 augmented MnSOD mRNA and its enzyme activity. In addition, the antisense oligodeoxyribonucleotide to MnSOD significantly inhibited both LIF and caSTAT3-mediated protective effects. CONCLUSIONS: The activation of STAT3 induces a protective effect on H/R-induced cardiomyocyte damage, mainly by inducting MnSOD. The STAT3-mediated signal is proposed as a therapeutical target of ROS-induced cardiomyocyte injury.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore