1,189 research outputs found
Lowering IceCube's energy threshold for point source searches in the Southern Sky
Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current Îœ ÎŒ interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (~100 TeV) starting event in the sample found that this event alone represents a 2.8Ï deviation from the hypothesis that the data consists only of atmospheric background.Fil: Aartsen, M. G.. University of Adelaide; AustraliaFil: Abraham, K.. Technische UniversitĂ€t MĂŒnchen; AlemaniaFil: Ackermann, M.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Adams, J.. University Of Canterbury; Nueva ZelandaFil: Aguilar, J. A.. UniversitĂ© Libre de Bruxelles; BĂ©lgicaFil: Golup, Geraldina Tamara. ComisiĂłn Nacional de EnergĂa AtĂłmica. Gerencia del Ărea de EnergĂa Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Patagonia Norte; ArgentinaFil: Wallace, A.. University of Adelaide; AustraliaFil: Wallraff, M.. Rwth Aachen University; AlemaniaFil: Wandkowsky, N.. University of Wisconsin; Estados UnidosFil: Weaver, Ch.. University of Alberta; CanadĂĄFil: Wendt, C.. University of Wisconsin; Estados UnidosFil: Westerhoff, S.. University of Wisconsin; Estados UnidosFil: Whelan, B. J.. University of Adelaide; AustraliaFil: Whitehorn, N.. University of California at Berkeley; Estados UnidosFil: Wickmann, S.. Rwth Aachen University; AlemaniaFil: Wiebe, K.. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Wiebusch, C. H.. Rwth Aachen University; AlemaniaFil: Wille, L.. University of Wisconsin; Estados UnidosFil: Williams, D. R.. University of Alabama at Birmingahm; Estados UnidosFil: Wills, L.. Drexel University; Estados UnidosFil: Wissing, H.. University of Maryland; Estados UnidosFil: Wolf, M.. Stockholms Universitet; SueciaFil: Wood, T. R.. University of Alberta; CanadĂĄFil: Woschnagg, K.. University of California at Berkeley; Estados UnidosFil: Xu, D. L.. University of Wisconsin; Estados UnidosFil: Xu, X. W.. Southern University; Estados UnidosFil: Xu, Y.. Stony Brook University; Estados UnidosFil: Yanez, J. P.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Yodh, G.. University of California at Irvine; Estados UnidosFil: Yoshida, S.. Chiba University; JapĂłnFil: Zoll, M.. Stockholms Universitet; Sueci
Light tracking through ice and water -- Scattering and absorption in heterogeneous media with Photonics
In the field of neutrino astronomy, large volumes of optically transparent
matter like glacial ice, lake water, or deep ocean water are used as detector
media. Elementary particle interactions are studied using in situ detectors
recording time distributions and fluxes of the faint photon fields of Cherenkov
radiation generated by ultra-relativistic charged particles, typically muons or
electrons.
The Photonics software package was developed to determine photon flux and
time distributions throughout a volume containing a light source through Monte
Carlo simulation. Photons are propagated and time distributions are recorded
throughout a cellular grid constituting the simulation volume, and Mie
scattering and absorption are realised using wavelength and position dependent
parameterisations. The photon tracking results are stored in binary tables for
transparent access through ANSI-C and C++ interfaces. For higher-level physics
applications, like simulation or reconstruction of particle events, it is then
possible to quickly acquire the light yield and time distributions for a
pre-specified set of light source and detector properties and geometries
without real-time photon propagation.
In this paper the Photonics light propagation routines and methodology are
presented and applied to the IceCube and Antares neutrino telescopes. The way
in which inhomogeneities of the Antarctic glacial ice distort the signatures of
elementary particle interactions, and how Photonics can be used to account for
these effects, is described.Comment: 22 pages, 8 Postscript figures, uses elsart.cl
SUSY Resonances from UHE neutralinos in Neutrino Telescopes and in the Sky
In the Top-down scenarios, the decay of super-heavy particles
(m~10^{12-16}GeV), situated in dark-matter halos not very far from our Galaxy,
can explain the ultra-high-energy (UHE) cosmic-ray spectrum beyond the
Griesen-Zatasepin-Kuzmin cut-off. In the MSSM, a major component of the UHE
cosmic-ray flux at PeV-EeV energies could be given by the lightest neutralino
\chi, that is the lightest stable supersymmetric particle. Then, the signal of
UHE \chi's on earth might emerge over the interactions of a comparable neutrino
component. We compute the event rates for the resonant production of "right"
selectrons and "right" squarks in mSUGRA, when UHE neutralinos of energy larger
than 10^5 GeV scatter off electrons and quarks in an earth-based detector like
IceCube. When the resonant channel dominates in the total \chi-e,\chi-q
scattering cross section, the only model parameters affecting the corresponding
visible signal rates turn out to be the physical masses of the resonant
right-scalar and of the lightest neutralino. We compare the expected number of
supersymmetric events with the rates corresponding to the expected Glashow W
resonance and to the continuum UHE \nu-N scattering for realistic power-law
spectra. We find that the event rate in the leptonic selectron channel is
particularly promising, and can reach a few tens for a one-year exposure in
IceCube. Finally, we note that UHE neutralinos at much higher energies (up to
hundreds ZeV) may produce sneutrino resonances by scattering off relic
neutrinos in the Local Group hot dark halo. The consequent \tilde{\nu}-burst
into hadronic final states could mimic Z-burst events, although with quite
smaller conversion efficiency.Comment: 23 pages, 4 figures; one reference adde
Search for Point Sources of High Energy Neutrinos with AMANDA
This paper describes the search for astronomical sources of high-energy
neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes,
used for the detection of Cherenkov light from upward traveling
neutrino-induced muons, buried deep in ice at the South Pole. The absolute
pointing accuracy and angular resolution were studied by using coincident
events between the AMANDA detector and two independent telescopes on the
surface, the GASP air Cherenkov telescope and the SPASE extensive air shower
array. Using data collected from April to October of 1997 (130.1 days of
livetime), a general survey of the northern hemisphere revealed no
statistically significant excess of events from any direction. The sensitivity
for a flux of muon neutrinos is based on the effective detection area for
through-going muons. Averaged over the Northern sky, the effective detection
area exceeds 10,000 m^2 for E_{mu} ~ 10 TeV. Neutrinos generated in the
atmosphere by cosmic ray interactions were used to verify the predicted
performance of the detector. For a source with a differential energy spectrum
proportional to E_{nu}^{-2} and declination larger than +40 degrees, we obtain
E^2(dN_{nu}/dE) <= 10^{-6}GeVcm^{-2}s^{-1} for an energy threshold of 10 GeV.Comment: 46 pages, 22 figures, 4 tables, submitted to Ap.
Muon Track Reconstruction and Data Selection Techniques in AMANDA
The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy
neutrino telescope operating at the geographic South Pole. It is a lattice of
photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m.
The primary goal of this detector is to discover astrophysical sources of high
energy neutrinos. A high-energy muon neutrino coming through the earth from the
Northern Hemisphere can be identified by the secondary muon moving upward
through the detector. The muon tracks are reconstructed with a maximum
likelihood method. It models the arrival times and amplitudes of Cherenkov
photons registered by the photo-multipliers. This paper describes the different
methods of reconstruction, which have been successfully implemented within
AMANDA. Strategies for optimizing the reconstruction performance and rejecting
background are presented. For a typical analysis procedure the direction of
tracks are reconstructed with about 2 degree accuracy.Comment: 40 pages, 16 Postscript figures, uses elsart.st
Shower Power: Isolating the Prompt Atmospheric Neutrino Flux Using Electron Neutrinos
At high energies, the very steep decrease of the conventional atmospheric
component of the neutrino spectrum should allow the emergence of even small and
isotropic components of the total spectrum, indicative of new physics, provided
that they are less steeply decreasing, as generically expected. One candidate
is the prompt atmospheric neutrino flux, a probe of cosmic ray composition in
the region of the knee as well as small- QCD, below the reach of collider
experiments. A second is the diffuse extragalactic background due to distant
and unresolved AGNs and GRBs, a key test of the nature of the highest-energy
sources in the universe. Separating these new physics components from the
conventional atmospheric neutrino flux, as well as from each other, will be
very challenging. We show that the charged-current {\it electron} neutrino
"shower" channel should be particularly effective for isolating the prompt
atmospheric neutrino flux, and that it is more generally an important
complement to the usually-considered charged-current {\it muon} neutrino
"track" channel. These conclusions remain true even for the low prompt
atmospheric neutrino flux predicted in a realistic cosmic ray scenario with
heavy and varying composition across the knee (Candia and Roulet, 2003 JCAP
{\bf 0309}, 005). We also improve the corresponding calculation of the neutrino
flux induced by cosmic ray collisions with the interstellar medium.Comment: 15 pages, 4 figures. Minor modifications, version accepted for
publication in JCA
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector
Data from the AMANDA-B10 detector taken during the austral winter of 1997
have been searched for a diffuse flux of high energy extraterrestrial
muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the
universe. This search yielded no excess events above those expected from the
background atmospheric neutrinos, leading to upper limits on the
extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical
confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x
10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV)
which is the most restrictive bound placed by any neutrino detector. When
specific predicted spectral forms are considered, it is found that some are
excluded.Comment: Submitted to Physical Review Letter
IceCube - the next generation neutrino telescope at the South Pole
IceCube is a large neutrino telescope of the next generation to be
constructed in the Antarctic Ice Sheet near the South Pole. We present the
conceptual design and the sensitivity of the IceCube detector to predicted
fluxes of neutrinos, both atmospheric and extra-terrestrial. A complete
simulation of the detector design has been used to study the detector's
capability to search for neutrinos from sources such as active galaxies, and
gamma-ray bursts.Comment: 8 pages, to be published with the proceedings of the XXth
International Conference on Neutrino Physics and Astrophysics, Munich 200
Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos
We present the results of a Monte-Carlo study of the sensitivity of the
planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV
energies. A complete simulation of the detector and data analysis is used to
study the detector's capability to search for muon neutrinos from sources such
as active galaxies and gamma-ray bursts. We study the effective area and the
angular resolution of the detector as a function of muon energy and angle of
incidence. We present detailed calculations of the sensitivity of the detector
to both diffuse and pointlike neutrino emissions, including an assessment of
the sensitivity to neutrinos detected in coincidence with gamma-ray burst
observations. After three years of datataking, IceCube will have been able to
detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma
significance, or, in the absence of a signal, place a 90% c.l. limit at a level
E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a
minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst
model following the formulation of Waxman and Bahcall would result in a 5-sigma
effect after the observation of 200 bursts in coincidence with satellite
observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table
Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of December 27th, 2004 with the AMANDA-II detector
On December 27th 2004, a giant gamma flare from the Soft Gamma-ray Repeater
1806-20 saturated many satellite gamma-ray detectors. This event was by more
than two orders of magnitude the brightest cosmic transient ever observed. If
the gamma emission extends up to TeV energies with a hard power law energy
spectrum, photo-produced muons could be observed in surface and underground
arrays. Moreover, high-energy neutrinos could have been produced during the SGR
giant flare if there were substantial baryonic outflow from the magnetar. These
high-energy neutrinos would have also produced muons in an underground array.
AMANDA-II was used to search for downgoing muons indicative of high-energy
gammas and/or neutrinos. The data revealed no significant signal. The upper
limit on the gamma flux at 90% CL is dN/dE < 0.05 (0.5) TeV^-1 m^-2 s^-1 for
gamma=-1.47 (-2). Similarly, we set limits on the normalization constant of the
high-energy neutrino emission of 0.4 (6.1) TeV^-1 m^-2 s^-1 for gamma=-1.47
(-2).Comment: 14 pages, 3 figure
- âŠ