1,189 research outputs found

    Lowering IceCube's energy threshold for point source searches in the Southern Sky

    Get PDF
    Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current Îœ ÎŒ interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (~100 TeV) starting event in the sample found that this event alone represents a 2.8σ deviation from the hypothesis that the data consists only of atmospheric background.Fil: Aartsen, M. G.. University of Adelaide; AustraliaFil: Abraham, K.. Technische UniversitĂ€t MĂŒnchen; AlemaniaFil: Ackermann, M.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Adams, J.. University Of Canterbury; Nueva ZelandaFil: Aguilar, J. A.. UniversitĂ© Libre de Bruxelles; BĂ©lgicaFil: Golup, Geraldina Tamara. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Gerencia del Área de EnergĂ­a Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte; ArgentinaFil: Wallace, A.. University of Adelaide; AustraliaFil: Wallraff, M.. Rwth Aachen University; AlemaniaFil: Wandkowsky, N.. University of Wisconsin; Estados UnidosFil: Weaver, Ch.. University of Alberta; CanadĂĄFil: Wendt, C.. University of Wisconsin; Estados UnidosFil: Westerhoff, S.. University of Wisconsin; Estados UnidosFil: Whelan, B. J.. University of Adelaide; AustraliaFil: Whitehorn, N.. University of California at Berkeley; Estados UnidosFil: Wickmann, S.. Rwth Aachen University; AlemaniaFil: Wiebe, K.. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Wiebusch, C. H.. Rwth Aachen University; AlemaniaFil: Wille, L.. University of Wisconsin; Estados UnidosFil: Williams, D. R.. University of Alabama at Birmingahm; Estados UnidosFil: Wills, L.. Drexel University; Estados UnidosFil: Wissing, H.. University of Maryland; Estados UnidosFil: Wolf, M.. Stockholms Universitet; SueciaFil: Wood, T. R.. University of Alberta; CanadĂĄFil: Woschnagg, K.. University of California at Berkeley; Estados UnidosFil: Xu, D. L.. University of Wisconsin; Estados UnidosFil: Xu, X. W.. Southern University; Estados UnidosFil: Xu, Y.. Stony Brook University; Estados UnidosFil: Yanez, J. P.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Yodh, G.. University of California at Irvine; Estados UnidosFil: Yoshida, S.. Chiba University; JapĂłnFil: Zoll, M.. Stockholms Universitet; Sueci

    Light tracking through ice and water -- Scattering and absorption in heterogeneous media with Photonics

    Full text link
    In the field of neutrino astronomy, large volumes of optically transparent matter like glacial ice, lake water, or deep ocean water are used as detector media. Elementary particle interactions are studied using in situ detectors recording time distributions and fluxes of the faint photon fields of Cherenkov radiation generated by ultra-relativistic charged particles, typically muons or electrons. The Photonics software package was developed to determine photon flux and time distributions throughout a volume containing a light source through Monte Carlo simulation. Photons are propagated and time distributions are recorded throughout a cellular grid constituting the simulation volume, and Mie scattering and absorption are realised using wavelength and position dependent parameterisations. The photon tracking results are stored in binary tables for transparent access through ANSI-C and C++ interfaces. For higher-level physics applications, like simulation or reconstruction of particle events, it is then possible to quickly acquire the light yield and time distributions for a pre-specified set of light source and detector properties and geometries without real-time photon propagation. In this paper the Photonics light propagation routines and methodology are presented and applied to the IceCube and Antares neutrino telescopes. The way in which inhomogeneities of the Antarctic glacial ice distort the signatures of elementary particle interactions, and how Photonics can be used to account for these effects, is described.Comment: 22 pages, 8 Postscript figures, uses elsart.cl

    SUSY Resonances from UHE neutralinos in Neutrino Telescopes and in the Sky

    Full text link
    In the Top-down scenarios, the decay of super-heavy particles (m~10^{12-16}GeV), situated in dark-matter halos not very far from our Galaxy, can explain the ultra-high-energy (UHE) cosmic-ray spectrum beyond the Griesen-Zatasepin-Kuzmin cut-off. In the MSSM, a major component of the UHE cosmic-ray flux at PeV-EeV energies could be given by the lightest neutralino \chi, that is the lightest stable supersymmetric particle. Then, the signal of UHE \chi's on earth might emerge over the interactions of a comparable neutrino component. We compute the event rates for the resonant production of "right" selectrons and "right" squarks in mSUGRA, when UHE neutralinos of energy larger than 10^5 GeV scatter off electrons and quarks in an earth-based detector like IceCube. When the resonant channel dominates in the total \chi-e,\chi-q scattering cross section, the only model parameters affecting the corresponding visible signal rates turn out to be the physical masses of the resonant right-scalar and of the lightest neutralino. We compare the expected number of supersymmetric events with the rates corresponding to the expected Glashow W resonance and to the continuum UHE \nu-N scattering for realistic power-law spectra. We find that the event rate in the leptonic selectron channel is particularly promising, and can reach a few tens for a one-year exposure in IceCube. Finally, we note that UHE neutralinos at much higher energies (up to hundreds ZeV) may produce sneutrino resonances by scattering off relic neutrinos in the Local Group hot dark halo. The consequent \tilde{\nu}-burst into hadronic final states could mimic Z-burst events, although with quite smaller conversion efficiency.Comment: 23 pages, 4 figures; one reference adde

    Search for Point Sources of High Energy Neutrinos with AMANDA

    Get PDF
    This paper describes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes, used for the detection of Cherenkov light from upward traveling neutrino-induced muons, buried deep in ice at the South Pole. The absolute pointing accuracy and angular resolution were studied by using coincident events between the AMANDA detector and two independent telescopes on the surface, the GASP air Cherenkov telescope and the SPASE extensive air shower array. Using data collected from April to October of 1997 (130.1 days of livetime), a general survey of the northern hemisphere revealed no statistically significant excess of events from any direction. The sensitivity for a flux of muon neutrinos is based on the effective detection area for through-going muons. Averaged over the Northern sky, the effective detection area exceeds 10,000 m^2 for E_{mu} ~ 10 TeV. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the predicted performance of the detector. For a source with a differential energy spectrum proportional to E_{nu}^{-2} and declination larger than +40 degrees, we obtain E^2(dN_{nu}/dE) <= 10^{-6}GeVcm^{-2}s^{-1} for an energy threshold of 10 GeV.Comment: 46 pages, 22 figures, 4 tables, submitted to Ap.

    Muon Track Reconstruction and Data Selection Techniques in AMANDA

    Full text link
    The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m. The primary goal of this detector is to discover astrophysical sources of high energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector. The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photo-multipliers. This paper describes the different methods of reconstruction, which have been successfully implemented within AMANDA. Strategies for optimizing the reconstruction performance and rejecting background are presented. For a typical analysis procedure the direction of tracks are reconstructed with about 2 degree accuracy.Comment: 40 pages, 16 Postscript figures, uses elsart.st

    Shower Power: Isolating the Prompt Atmospheric Neutrino Flux Using Electron Neutrinos

    Get PDF
    At high energies, the very steep decrease of the conventional atmospheric component of the neutrino spectrum should allow the emergence of even small and isotropic components of the total spectrum, indicative of new physics, provided that they are less steeply decreasing, as generically expected. One candidate is the prompt atmospheric neutrino flux, a probe of cosmic ray composition in the region of the knee as well as small-xx QCD, below the reach of collider experiments. A second is the diffuse extragalactic background due to distant and unresolved AGNs and GRBs, a key test of the nature of the highest-energy sources in the universe. Separating these new physics components from the conventional atmospheric neutrino flux, as well as from each other, will be very challenging. We show that the charged-current {\it electron} neutrino "shower" channel should be particularly effective for isolating the prompt atmospheric neutrino flux, and that it is more generally an important complement to the usually-considered charged-current {\it muon} neutrino "track" channel. These conclusions remain true even for the low prompt atmospheric neutrino flux predicted in a realistic cosmic ray scenario with heavy and varying composition across the knee (Candia and Roulet, 2003 JCAP {\bf 0309}, 005). We also improve the corresponding calculation of the neutrino flux induced by cosmic ray collisions with the interstellar medium.Comment: 15 pages, 4 figures. Minor modifications, version accepted for publication in JCA

    Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

    Full text link
    Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x 10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded.Comment: Submitted to Physical Review Letter

    IceCube - the next generation neutrino telescope at the South Pole

    Get PDF
    IceCube is a large neutrino telescope of the next generation to be constructed in the Antarctic Ice Sheet near the South Pole. We present the conceptual design and the sensitivity of the IceCube detector to predicted fluxes of neutrinos, both atmospheric and extra-terrestrial. A complete simulation of the detector design has been used to study the detector's capability to search for neutrinos from sources such as active galaxies, and gamma-ray bursts.Comment: 8 pages, to be published with the proceedings of the XXth International Conference on Neutrino Physics and Astrophysics, Munich 200

    Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos

    Full text link
    We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observations. After three years of datataking, IceCube will have been able to detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma significance, or, in the absence of a signal, place a 90% c.l. limit at a level E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst model following the formulation of Waxman and Bahcall would result in a 5-sigma effect after the observation of 200 bursts in coincidence with satellite observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table

    Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of December 27th, 2004 with the AMANDA-II detector

    Get PDF
    On December 27th 2004, a giant gamma flare from the Soft Gamma-ray Repeater 1806-20 saturated many satellite gamma-ray detectors. This event was by more than two orders of magnitude the brightest cosmic transient ever observed. If the gamma emission extends up to TeV energies with a hard power law energy spectrum, photo-produced muons could be observed in surface and underground arrays. Moreover, high-energy neutrinos could have been produced during the SGR giant flare if there were substantial baryonic outflow from the magnetar. These high-energy neutrinos would have also produced muons in an underground array. AMANDA-II was used to search for downgoing muons indicative of high-energy gammas and/or neutrinos. The data revealed no significant signal. The upper limit on the gamma flux at 90% CL is dN/dE < 0.05 (0.5) TeV^-1 m^-2 s^-1 for gamma=-1.47 (-2). Similarly, we set limits on the normalization constant of the high-energy neutrino emission of 0.4 (6.1) TeV^-1 m^-2 s^-1 for gamma=-1.47 (-2).Comment: 14 pages, 3 figure
    • 

    corecore