12 research outputs found

    Frame dragging and bending of Light in Kerr and Kerr-(anti) de Sitter spacetimes

    Full text link
    The equations of general relativity in the form of timelike and null geodesics that describe motion of test particles and photons in Kerr spacetime are solved exactly including the contribution from the cosmological constant. We then perform a systematic application of the exact solutions obtained to the following cases. The exact solutions derived for null, spherical, polar and non-polar orbits are applied for the calculation of frame dragging (Lense-Thirring effect) for the orbit of a photon around the galactic centre, assuming that the latter is a Kerr black hole for various values of the Kerr parameter including those supported by recent observations. Unbound null polar orbits are investigated, and an analytical expression for the deviation angle of a polar photon orbit from the gravitational Kerr field is derived. In addition, we present the exact solution for timelike and null equatorial orbits. In the former case, we derive an analytical expression for the precession of the point of closest approach (perihelion, periastron) for the orbit of a test particle around a rotating mass whose surrounding curved spacetime geometry is described by the Kerr field. In the latter case, we calculate an exact expression for the deflection angle for a light ray in the gravitational field of a rotating mass (the Kerr field). We apply this calculation for the bending of light from the gravitational field of the galactic centre for various values of the Kerr parameter and the impact factor.Comment: LaTeX file, 45 pages 1 figure, typos fixed, v3 published in Classical and Quantum Gravity 22 (2005) 4391-442

    Anmerkungen zum „Riemannschen Beispiel“ % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! n=1  sin n2xn2{\sum\limits^\infty_{n=1}\ \ {\rm sin}\ n^2x\over n^2} einer stetigen, nicht differenzierbaren Funktion

    No full text

    Iterated elliptic and hypergeometric integrals for Feynman diagrams

    No full text
    We calculate 3-loop master integrals for heavy quark correlators and the 3-loop quantum chromodynamics corrections to the ρρ-parameter. They obey non-factorizing differential equations of second order with more than three singularities, which cannot be factorized in Mellin-N space either. The solution of the homogeneous equations is possible in terms of 2_2F1_1 Gauß hypergeometric functions at rational argument. In some cases, integrals of this type can be mapped to complete elliptic integrals at rational argument. This class of functions appears to be the next one arising in the calculation of more complicated Feynman integrals following the harmonic polylogarithms, generalized polylogarithms, cyclotomic harmonic polylogarithms, square-root valued iterated integrals, and combinations thereof, which appear in simpler cases. The inhomogeneous solution of the corresponding differential equations can be given in terms of iterative integrals, where the new innermost letter itself is not an iterative integral. A new class of iterative integrals is introduced containing letters in which (multiple) definite integrals appear as factors. For the elliptic case, we also derive the solution in terms of integrals over modular functions and also modular forms, using q-product and series representations implied by Jacobi’s ϑiϑ_i functions and Dedekind’s ηη-function. The corresponding representations can be traced back to polynomials out of Lambert–Eisenstein series, having representations also as elliptic polylogarithms, a qq-factorial 1/ηk(τ)1/η^{k}(τ), logarithms, and polylogarithms of qq and their qq-integrals. Due to the specific form of the physical variable x(q)x(q) for different processes, different representations do usually appear. Numerical results are also presented

    Iterated elliptic and hypergeometric integrals for Feynman diagrams

    No full text
    corecore